Supporting Information

## Low-temperature and template-free fabrication of cobalt oxide acicular nanotube arrays and their application for supercapacitors

Chung-Wei Kung<sup>a</sup>, Yu-Heng Cheng<sup>a</sup>, Chuan-Ming Tseng<sup>b</sup>, Li-Yao Chou<sup>a</sup>, and Kuo-Chuan Ho<sup>a,c</sup>\*

<sup>a</sup> Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan

<sup>b</sup> Institute of Materials Science and Engineering, National Central University, Jhongli, Taoyuan 32001, Taiwan

<sup>c</sup> Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan

#### S1. EIS spectra of the Co<sub>3</sub>O<sub>4</sub> ANRAs and Co<sub>3</sub>O<sub>4</sub> ANTAs electrodes



**Figure S1.** EIS spectra of the Co<sub>3</sub>O<sub>4</sub> ANRAs and Co<sub>3</sub>O<sub>4</sub> ANTAs electrodes, measured in 5.0 M KOH solution at 0.37 V *vs.* Ag/AgCl/KCl (sat'd) with an amplitude of 40 mV. *Inset*: the equivalent circuit, which is composed of the series resistance ( $R_s$ ), charge-transfer resistance ( $R_{ct}$ ), and constant phase element (CPE).

# S2. Charge-discharge curves of the bare graphite, Co<sub>3</sub>O<sub>4</sub> ANRAs and Co<sub>3</sub>O<sub>4</sub> ANTAs electrodes at various charge-discharge current densities



**Figure S2.** Charge-discharge curves of the  $Co_3O_4$  ANTAs electrode measured in 5.0 M KOH solution at various charge-discharge current densities.



Figure S3. Charge-discharge curves of the  $Co_3O_4$  ANRAs electrode measured in 5.0 M KOH solution at various charge-discharge current densities.



**Figure S4.** Charge-discharge curves of the bare graphite substrate measured in 5.0 M KOH solution at various charge-discharge current densities.

#### S3. Estimation of the film mass

The 37% HCl solutions containing various concentrations of CoCl<sub>2</sub>, with the color ranging from bright blue to transparent, were prepared. The UV-visible spectra of these solutions were measured, and their maximum absorbance at 663 nm was calibrated with the concentration of CoCl<sub>2</sub>, as shown in Fig. S5(a). Thereafter, the Co<sub>3</sub>O<sub>4</sub> ANRAs and Co<sub>3</sub>O<sub>4</sub> ANTAs thin films (3 cm<sup>2</sup> for each) were dissolved in two batches of 15 mL fresh 37% HCl solution, respectively. The UV-visible spectra of these two solutions were measured, as shown in Fig. S5(b). According to the absorbance at 663 nm shown in Fig. S5(b), the concentrations of Co<sup>2+</sup> in the solutions of Co<sub>3</sub>O<sub>4</sub> ANRAs and Co<sub>3</sub>O<sub>4</sub> ANTAs are 0.84 mM and 0.94 mM, respectively. From the molecular weight of Co<sub>3</sub>O<sub>4</sub>, the masses of the Co<sub>3</sub>O<sub>4</sub> ANRAs and Co<sub>3</sub>O<sub>4</sub> ANTAs thin films can be estimated to be 0.34 mg/cm<sup>2</sup> and 0.38 mg/cm<sup>2</sup>, respectively.



Figure S5. (a) Relationship between the absorbance of the  $CoCl_2$  solution in 37% HCl at 663 nm and the concentration of  $CoCl_2$ . (b) UV-visible spectra of the 37% HCl solutions after digesting the  $Co_3O_4$  ANRAs and  $Co_3O_4$  ANTAs thin films.

| Morphology of Co <sub>3</sub> O <sub>4</sub>            | Substrate                  | High-temperature<br>treatment to | Specific capacitance | Reference     |
|---------------------------------------------------------|----------------------------|----------------------------------|----------------------|---------------|
|                                                         |                            | obtain $Co_3O_4$                 | (F/g)                |               |
| Co <sub>3</sub> O <sub>4</sub> nanosheet arrays         | Ni foam                    | $\checkmark$                     | 2,735                | [S1]          |
| Co <sub>3</sub> O <sub>4</sub> thin layer               | Porous Ni substrate        | x                                | 2,200                | [S2]          |
| Co <sub>3</sub> O <sub>4</sub> nanoflowers              | Ni foam                    | $\checkmark$                     | 1,937                | [S3]          |
| Co <sub>3</sub> O <sub>4</sub> nanowires                | Carbon fiber paper         | $\checkmark$                     | 1,525                | [S4]          |
| Co <sub>3</sub> O <sub>4</sub> nanowire arrays          | Ni foam                    | $\checkmark$                     | 1,257                | [S5]          |
| Co <sub>3</sub> O <sub>4</sub> nanowire arrays          | Ni foam                    | $\checkmark$                     | 1,160                | [S6]          |
| Co <sub>3</sub> O <sub>4</sub> nanonet                  | Carbon fiber paper         | $\checkmark$                     | 1,124                | [S7]          |
| Co <sub>3</sub> O <sub>4</sub> nanosheets               | Ti foil                    | ×                                | 1,033                | [ <b>S</b> 8] |
| Co <sub>3</sub> O <sub>4</sub> acicular nanotube arrays | Graphite                   | ×                                | 979                  | This work     |
| Co <sub>3</sub> O <sub>4</sub> nanotubes                | Ni foam                    | $\checkmark$                     | 574                  | [S9]          |
| Co <sub>3</sub> O <sub>4</sub> microsphere arrays       | RGO/CNT paper <sup>a</sup> | ×                                | 378                  | [S10]         |
| Co <sub>3</sub> O <sub>4</sub> nanoparticles            | Ni foam                    | $\checkmark$                     | 363                  | [S11]         |
| Co <sub>3</sub> O <sub>4</sub> hollow-sphere array      | Ni foil                    | $\checkmark$                     | 358                  | [S12]         |
| Hollow Co <sub>3</sub> O <sub>4</sub> boxes             | Ni foam                    | $\checkmark$                     | 278                  | [S13]         |
| Co <sub>3</sub> O <sub>4</sub> nanowires                | Ni grid                    | $\checkmark$                     | 202                  | [S14]         |
| Hollow Co <sub>3</sub> O <sub>4</sub> octahedra         | Carbon fiber paper         | ×                                | 192                  | [S15]         |
| Porous Co <sub>3</sub> O <sub>4</sub>                   | Ni foam                    | $\checkmark$                     | 150                  | [S16]         |
| Co <sub>3</sub> O <sub>4</sub> microtubules             | Ni foam                    | $\checkmark$                     | 131                  | [S17]         |
| Co <sub>3</sub> O <sub>4</sub> nanosheets               | Ni grid                    | $\checkmark$                     | 92                   | [S18]         |

### S4. Comparison to the reported studies using Co<sub>3</sub>O<sub>4</sub> as pseudocapacitive material

Table S1. Partial list of recent reported studies using Co<sub>3</sub>O<sub>4</sub> as pseudocapacitive material.

<sup>a</sup> RGO/CNT = Reduced graphene oxide/carbon nanotubes

S5. Charge-discharge curves recorded during 2,000 cycles of measurement



Figure S6. Charge-discharge curve of the  $Co_3O_4$  ANRAs electrode measured in 5.0 M KOH solution at 10 mA/cm<sup>2</sup>, recorded during 2,000 cycles of measurement.



Figure S7. Charge-discharge curve of the  $Co_3O_4$  ANTAs electrode measured in 5.0 M KOH solution at 10 mA/cm<sup>2</sup>, recorded during 2,000 cycles of measurement.

S6. Morphologies of the films after 2,000 cycles of the charge-discharge process



**Figure S8.** SEM images of the (a)  $Co_3O_4$  ANRAs thin film, and (b)  $Co_3O_4$  ANTAs thin film after 2,000 cycles of the charge-discharge process.

#### **S7. Reference**

- [S1] C. Z. Yuan, L. Yang, L. R. Hou, L. F. Shen, X. G. Zhang and X. W. Lou, *Energy Environ*. Sci., 2012, 5, 7883.
- [S2] M. J. Deng, F. L. Huang, I. W. Sun, W. T. Tsai and J. K. Chang, *Nanotechnology*, 2009, 20, 175602.
- [S3] X. X. Qing, S. Q. Liu, K. L. Huang, K. Z. Lv, Y. P. Yang, Z. G. Lu, D. Fang and X. X. Liang, *Electrochim. Acta*, 2011, 56, 4985.
- [S4] R. B. Rakhi, W. Chen, D. Y. Cha and H. N. Alshareef, Nano Lett., 2012, 12, 2559.
- [S5] H. N. Zhang, Y. J. Chen, W. W. Wang, G. H. Zhang, M. Zhuo, H. M. Zhang, T. Yang, Q. H. Li and T. H. Wang, *J. Mater. Chem. A*, 2013, 1, 8593.
- [S6] F. Zhang, C. Z. Yuan, X. J. Lu, L. J. Zhang, Q. Che and X. G. Zhang, J. Power Sources, 2012, 203, 250.
- [S7] L. Yang, S. Cheng, Y. Ding, X. B. Zhu, Z. L. Wang and M. L. Liu, *Nano Lett.*, 2012, 12, 321.
- [S8] C. W. Kung, H. W. Chen, C. Y. Lin, R. Vittal and K. C. Ho, *J. Power Sources*, 2012, 214, 91.
- [S9] J. Xu, L. Gao, J. Cao, W. Wang and Z. Chen, *Electrochim. Acta*, 2010, 56, 732.
- [S10] C. Z. Yuan, L. Yang, L. R. Hou, J. Y. Li, Y. X. Sun, X. G. Zhang, L. F. Shen, X. J. Lu, S.
- L. Xiong and X. W. Lou, Adv. Funct. Mater., 2012, 22, 2560.
- [S11] J. C. Deng, L. T. Kang, G. L. Bai, Y. Li, P. Y. Li, X. G. Liu, Y. Z. Yang, F. Gao and W. Liang, *Electrochim. Acta*, 2014, **132**, 127.

- [S12] X. H. Xia, J. P. Tu, X. L. Wang, C. D. Gua and X. B. Zhao, *Chem. Commun.*, 2011, 47, 5786.
- [S13] W. Du, R. M. Liu, Y. W. Jiang, Q. Y. Lu, Y. Z. Fan and F. Gao, *J. Power Sources*, 2013, 227, 101.
- [S14] D. W. Wang, Q. H. Wang and T. M. Wang, Inorg. Chem., 2011, 50, 6482.
- [S15] Y. Cao, F. L. Yuan, M. S. Yao, J. H. Bang and J. H. Lee, CrystEngComm, 2014, 16, 826.
- [S16] F. L. Meng, Z. G. Fang, Z. X. Li, W. W. Xu, M. J. Wang, Y. P. Liu, J. Zhang, W. R. Wang,
- D. Y. Zhao and X. H. Guo, J. Mater. Chem. A, 2013, 1, 7235.
- [S17] D. L. Yan, H. Zhang, L. Chen, G. S. Zhu, S. C. Li, H. R. Xu and A. B. Yu, ACS Appl. Mater. Interfaces, 2014, 6, 15632.
- [S18] S. L. Xiong, C. Z. Yuan, X. G. Zhang, B. J. Xi and Y. T. Qian, *Chem. Eur. J.*, 2009, 15, 5320.