Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2015

Supplementary materials

Control of Micro/Mesoporosity in Non-hydrolytic Hybrid Silicophosphate Xerogels

Ales Styskalik,^{a,b} David Skoda,^{a,b} Zdenek Moravec,^a Michal Babiak,^{a,b} Craig E. Barnes,^c and Jiri Pinkas^{*,a,b}

^a Masaryk University, Department of Chemistry, Kotlarska 2, CZ-61137 Brno, Czech Republic. E-mail: jpinkas@chemi.muni.cz

^b Masaryk University, CEITEC MU, Kamenice 5, CZ-62500 Brno, Czech Republic.

^c University of Tennessee, Department of Chemistry, Knoxville, TN 37996-1600, United States.

*Corresponding author. Phone: +420549496493; fax: +420549492443; E-mail address: jpinkas@chemi.muni.cz (J. Pinkas)

Experimental

Syntheses. Si(OAc)₄ (OAc = acetate) was prepared according to the literature.¹ MeSi(OAc)₃, Me₂Si(OAc)₂, 'BuSi(OAc)₃, and (AcO)₃Si(CH₂)_nSi(OAc)₃, (n = 1–3, 6) were prepared by a modified procedure – the complete acetylation of the alkyltrichlorosilanes was attained by distilling off CH₃COCl from the reaction mixture. PhSi(OAc)₃ and Ph₂Si(OAc)₂ were prepared according to the literature^{2,3} and purified by vacuum sublimation. 'BuOSi(OAc)₃ was prepared according to literature.⁴ SiCl₄ (Merck, 99 %) and acetic acid anhydride (Riedel de Haën, 98 %) were distilled prior to use, 'BuOH was dried over molecular sieve, NaOAc was dried in an oven at 110 °C, MeSiCl₃ (Sigma-Aldrich, 99 %), Me₂SiCl₂ (Sigma-Aldrich, 99.5 %), 'BuSiCl₃ (Sigma-Aldrich, 96 %), Cl₃Si(CH₂)_nSiCl₃ (Gelest, Inc.), PhSiCl₃ (Sigma-Aldrich, 97 %) and Ph₂SiCl₂ (Sigma-Aldrich, 97 %) were used as received. Toluene was freshly distilled from Na/benzophenone under N₂ before use. *Tris*(trimethylsilyl)phosphate (TTP) was prepared from H₃PO₄ and Me₃SiCl and vacuum-distilled. PhP(O)(OSiMe₃)₂ and C₆H₁₁P(O)(OSiMe₃)₂ were prepared from the corresponding phosphonic acids and Me₃SiCl.⁵ (Me₃SiO)₂P(O)CH₂CH₂P(O)(OSiMe₃)₂ and (Me₃SiO)₂P(O)C₆H₄P(O)(OSiMe₃)₂ were prepared from triethylphosphite by the Arbuzov reaction⁶ followed by silylation with Me₃SiBr.⁷ Their purification was done by vacuum distillation and vacuum sublimation, respectively. PhP(O)(OH)₂ (Sigma-Aldrich, 98 %), C₆H₁₁P(O)(OH)₂ (house stock), triethylphosphite (Sigma-Aldrich, 98 %), 1,2-dibromoethane (Sigma-Aldrich, 98 %), 1,4-dibromobenzene (Sigma-Aldrich, 98%) and Me₃SiBr (Sigma-Aldrich, 97 %) were used as received, NiCl₂.xH₂O was vacuum dried at 150 °C. Benzene-*d*₆ was dried over and distilled from Na/K alloy and degassed prior to use. CDCl₃ was dried by P₂O₅ and vacuum-transferred to an ampoule.

Characterization. The IR spectra (4000–400 cm⁻¹) were recorded on a Bruker Tensor T27 spectrometer. Samples were prepared as KBr pellets. N_2 adsorption-desorption experiments were performed at 77 K on a Quantachrome Autosorb-1MP porosimeter.^{8,9} Prior to the measurements, the samples were degassed at 25 °C for at least 24 h until the outgas rate was less than 0.4 Pa min⁻¹. The adsorption-desorption isotherm was measured for each sample at least three times. The specific surface area was determined by the multipoint BET method with at least five data points with relative pressures between 0.05 and 0.23. Micropore volume was established from a t-plot and pore size distribution from DFT procedure with Kernel N2 at 77 K on silica, cylindrical pore, NSDFT equilibrium model. Thermal analysis (TG/DSC) was measured on a Netzsch STA 449C Jupiter apparatus from 25–1000 °C under flowing air (70 cm³ min⁻¹) with a heating rate of 5 K min⁻¹. Solution NMR spectra were recorded on a Bruker Avance II 300 NMR spectrometer at frequencies of 300.1 MHz for ¹H and 75.5 MHz for ¹³C with deuterated solvents as the external lock. The ¹H and $^{13}C{^{1}H}$ NMR spectra were referenced to the residual proton signals or carbon resonances of benzene- d_6 (7.15 and 128.0 ppm, respectively) and CDCl₃ (7.20 and 77.0 ppm). Solid-state ³¹P MAS, ²⁹Si CPMAS, and ¹³C CPMAS NMR spectra were acquired on a wide-bore Varian INOVA 400 NMR spectrometer with a broadband Chemagnetic 5mm MAS probe. Inside a dry box, samples were loaded into 5 mm pencil rotors, stoppered with teflon plugs and sealed with silicon grease and paraffin wax. Magic angle spinning rates were 5 kHz for ²⁹Si and ¹³C CPMAS and 10 kHz for ³¹P MAS spectra. Chemical shifts were referenced externally to ³¹P δ [H₃PO₄ (85%)]: 0.0 ppm; ²⁹Si δ [(Me₃SiO)₈Si₈O₂₀]: 11.72 ppm; ¹³C δ [adamantane] 38.68 ppm. GC-MS spectra were obtained on a Thermo Scientific Trace GC Ultra – TSQ Quantum XLS mass spectrometer. TS-SQC column (15 m, 0.25 mm, 0.25 um) was heated with following program: 50 °C (0 min), 5 °C min⁻¹ up to 80 °C, 15 °C min⁻¹ up to 120 °C, 35 °C min⁻¹ up to 200 °C (0.5 min). Split mode, injector temperature 200 °C, interface temperature 200 °C, detector temperature 200 °C. Column pressure was set to 31.5 kPa and ionization energy to 70 eV. Single-crystal X-ray diffraction data were collected on a KUMA KM-4 κ-axis CCD diffractometer

with Mo-K α radiation (λ = 0.71073 Å). The temperature during data collection was 120(2) K. The structure of [(Ph₂Si{O₂P(O)OSiMe₃})₂] was solved by direct methods and refined by standard methods using ShelXTL software package.^{10,11}

The site occupancy factors of atoms of solvent molecule (disordered near the center of inversion) were set to 0.5 and the rigid bond restrain (RIGU) was applied to whole solvent molecule. Additionally, the geometry of the solvent molecule was restrained by SAME instruction. All hydrogen atoms were placed at calculated positions and were refined as riding with their U_{iso} set to either $1.2U_{eq}$ or $1.5U_{eq}$ (methyl) of the respective carrier atoms. Hydrogens of methyl groups were allowed to rotate about the C—CH₃ bond. Details of the data collection and structure refinement are listed in Tab. 1S. CCDC xxxyyy contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

1. Mono- and dialkyl/arylacetoxysilanes and alkyl/arylphosphonic acid esters

MeSiP. OP(OSiMe₃)₃ (1.450 g; 4.615 mmol) was added dropwise to a stirred solution of MeSi(OAc)₃ (1.025 g; 4.655 mmol) in toluene (5 cm³). After the addition was complete, stirring was stopped and the reaction mixture was kept at 80 °C for one week. The resulting viscous liquid afforded glue-like mixture of oligomers after drying *in vacuo* at room temperature. Further drying at 100 °C provided 0.8722 g of hard glassy product (**MeSiP**) (Tab. 1S).

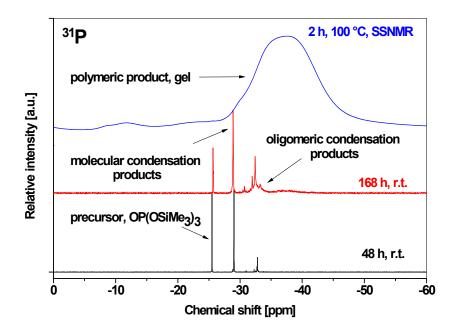


Fig. 1S: The extent of condensation between MeSi(OAc)₃ and OP(OSiMe₃)₃ followed by ³¹P NMR.

IR (**MeSiP**, KBr, cm⁻¹) v : v 500 m, 606 w, 730 m (ρ_s SiCH₃), 765 vw (ρ_s SiCH₃), 807 s (ρ_{as} SiCH₃), 850 s (ρ_{as} SiCH₃), 1019 vs (v Si–O–P), 1227 vw, 1260 m (δ_s SiCH₃), 1281 m (δ_s SiCH₃), 1319 m (v P=O), 1377 vw (δ_s CH₃), 1720 w, 1753 m (v_{as} CH₃COO unident), 2920 vw (v_s CH₃), 2968 w (v_{as} CH₃).

¹³C CPMAS NMR (**MeSiP**, ppm) δ : -4.1 (POSiCH₃), 1.1 (O₃SiCH₃), 22.7 (CH₃COO unident), 169.7 (CH₃COO unident).

²⁹Si CPMAS NMR (**MeSiP**, ppm) δ : 26 (POS*i*Me₃), -61 (MeS*i*O₃).

³¹P MAS NMR (**MeSiP**, ppm) δ : -37 (O=*P*(OSi)₃).

SiHexP. $C_6H_{11}P(O)(OSiMe_3)_2$ (1.327 g; 4.305 mmol) was added dropwise to a stirred melt of Si(OAc)_4 (0.572 g; 2.16 mmol) at 125 °C. The reaction was stopped after 30 min and drying *in vacuo* afforded 0.747 g of orange xerogel (SiHexP). The reaction was carried out also in toluene at 80 °C providing an orange xerogel. Both products showed identical properties.

IR (**SiHexP**, KBr, cm⁻¹) v: 451 m, 561 m, 649 w (v SiC₃), 762 w (ρ_s SiCH₃), 851 s (ρ_{as} SiCH₃), 894 w, 1021 vs (ρ CH₃), 1093 vs (v Si–O–P), 1127 vs (v P–O–Si), 1221 s, 1256 s (δ_s SiCH₃), 1283 m, 1300 sh (vP=O), 1372 vw, 1452 m, 1541 w (v_{as} CH₃COO bident), 1720 w (v_{as} CH₃COO unident), 1761 w (v_{as} CH₃COO unident), 2856 s (v_s CH₂), 2933 vs (v_{as} CH₂).

¹³C CPMAS NMR (**SiHexP**, ppm) δ : -1.2 (POSi*C*H₃), 26.6 (*C*₆H₁₁), 37.2 (*C*₆H₁₁), 167.9 (CH₃*C*OO unident), 192.1 (CH₃*C*OO bident).

²⁹Si MAS NMR (**SiHexP**, ppm) δ : 22 (POSiMe₃), -111 (SiO₄), -195 (SiO₆), -214 (SiO₆).

³¹P MAS NMR (**SiHexP**, ppm) δ : 10 (C₆H₁₁P(O)(OSi)₂), 3 (C₆H₁₁P(OSi)₃).

Tab. 1S: Mono- and dialkyl/arylacetoxysilanes and alkyl/arylphosphonic acid esters: Reagent molar amounts, yields, degrees of condensation (DC) and comparison of experimental (ML) and calculated mass losses (ML_{calc}) during thermogravimetric analysis of hybrid silicophosphates.

Sample	n _{si} [mmol]	n _P [mmol]	Yield [g]	DC [%]	ML [%]	ML _{calc} [%]
SiP	11.93	15.84	2.733	85.7	29.4	32.8
MeSiP	4.655	4.615	0.872	87.1	32.1	35.3
Me2SiP	4.20	2.80	0.579	89.4	-	-
PhSiP	3.621	3.636	1.296	63.6	-	-
Ph2SiP	3.30	2.38	1.144	61.9	-	-
BuSiP	2.18	2.40	0.659	69.3	-	-
SiHexP	2.16	4.305	0.747	100	65.0	42.8
SiPhP	4.597	9.318	2.582	58.1	63.5	64.1

Tab. 2S: Gelation properties of various alkyl/arylacetoxysilanes and alkyl/arylphosphonates.

Sample	Si precursor	P precursor	Solª	Gel	Product ^b	SA [m ² g ⁻¹]
SiP	Si(OAc) ₄	OP(OSiMe ₃) ₃	Yes	Yes	Х	568
MeSiP	MeSi(OAc) ₃	OP(OSiMe ₃) ₃	Yes	Yes	Х	Nonporous
Me2SiP	Me ₂ Si(OAc) ₂	OP(OSiMe ₃) ₃	Yes	No	0	-
PhSiP	PhSi(OAc)₃	OP(OSiMe ₃) ₃	Yes	No	0	-
Ph2SiP	Ph ₂ Si(OAc) ₂	OP(OSiMe ₃) ₃	No	No	М	-
BuSiP	^t BuSi(OAc) ₃	OP(OSiMe ₃) ₃	Yes	No	0	-
SiHexP	Si(OAc) ₄	$C_6H_{11}P(O)(OSiMe_3)_2$	Yes	Yes	Х	Nonporous
SiPhP	Si(OAc) ₄	PhP(O)(OSiMe ₃) ₂	Yes	Yes	Р	Nonporous

^a Results of NMR reactions. ^b X = xerogel, P = precipitate, O = mixture of oligomers, M = molecular products. Nonporous = SA below 10 m² g⁻¹

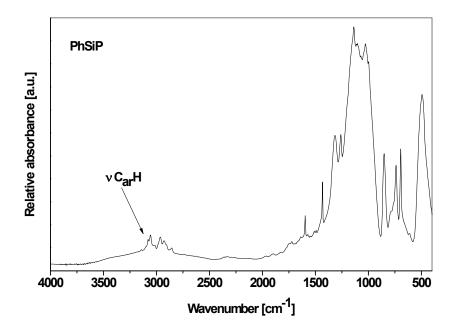


Fig. 2S: IR spectrum of hybrid silicophosphate xerogel with Ph–SiO₃ groups (PhSiP).

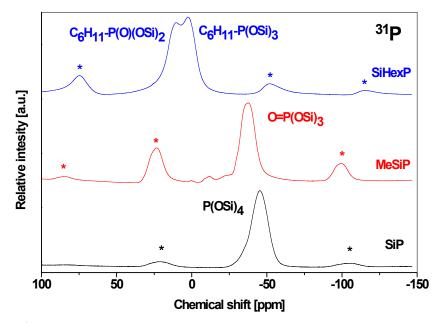


Fig. 3S: ³¹P MAS NMR spectra of hybrid silicophosphate xerogel with C₆H₁₁–P(O)O₂ groups (SiHexP, top), hybrid xerogel with CH₃–SiO₃ groups (MeSiP, center) and parent silicophosphate sample (SiP, bottom). Asterisks denote spinning sidebands.

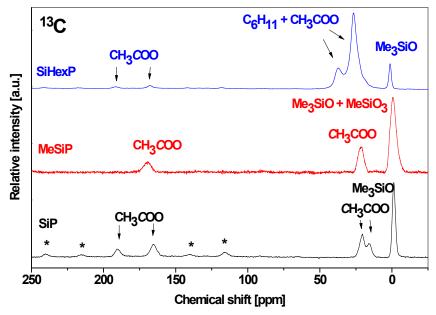


Fig. 4S: ¹³C CPMAS NMR spectra of hybrid silicophosphate xerogel with C_6H_{11} -P(O)O₂ groups (SiHexP, top), hybrid xerogel with CH₃-SiO₃ groups (MeSiP, center) and parent silicophosphate sample (SiP, bottom). Asterisks denote spinning sidebands.

BuOSiP. OP(OSiMe₃)₃ (0.798 g; 2.54 mmol) was added dropwise to a stirred solution of ^tBuOSi(OAc)₃ (0.711 g; 2.55 mmol) in toluene (8 cm³). After the addition was complete, stirring was stopped. The reaction mixture was kept at 80 °C for 48 h during which time the viscosity of the mixture increased, however the gel was not formed. The reaction mixture was then dried under vacuum for two days and 0.410 g of a white powder (**BuOSiP**) was obtained.

IR (**BuOSiP**, KBr, cm⁻¹) v: 514 m, 763 w (ρ_s SiCH₃), 856 s (ρ_{as} SiCH₃), 894 w, 1102 vs (v Si–O–P), 1259 s (δ_s SiCH₃), 1305 sh (v P=O), 1373 w, 1397 vw, 1475 w, 1705 w (v_{as} COO unident), 1758 w (v_{as} COO unident), 2906 s (v_s CH₃), 2980 vs (v_{as} CH₃).

¹³C CPMAS NMR (**BuOSiP**, ppm) δ : 0.2 (POSiCH₃), 30.5 ((CH₃)₃CO), 75.5 ((CH₃)₃CO).

²⁹Si MAS NMR (**BuOSiP**, ppm) δ : 23 (POSiMe₃), 14 (POSiMe₃), -114 (SiO₄), -215 (SiO₆).

[{Ph₂Si{O₂P(O)OSiMe₃}]₂]. A solution of diphenyldiacetoxysilane (0.292 g; 0.972 mmol) in toluene (10 cm³) was dropwise added to the solution of TTP (0.307 g; 0.977 mmol) in toluene (10 cm³). The reaction mixture was placed into the oil bath and kept at 80 °C for one week. According to ³¹P NMR, the starting ester was completely consumed and the reaction mixture consisted of at least four molecular condensation products. The toluene was removed *in vacuo* and the resulting mixture was recrystallized from 10 cm³ of hexane and 2 cm³ of THF affording small amount of colorless hexagonal crystals (20 mg, 6 %).

¹H NMR ([(Ph₂Si{O₂P(O)OSiMe₃})₂], ppm) δ: 0.09 (s, (CH₃)₃Si), 1.29 (s, CH₃C₆H₅), 6.9–7.7 (mult., (C₆H₄)₂Si).

³¹P NMR ([($Ph_2Si\{O_2P(O)OSiMe_3\}$)₂],ppm) δ : -32.6 (s, $O_2P(O)OSiMe_3$).

 $[(Ph_2Si\{O_2P(O)OSiMe_3\})_2]$ and $[\{^tBu_2Si\{O_2P(O)Ph\})_2]^{12}$ are the only structurally characterized examples of Si_2P_2O_4 cycles. They resemble the single four-ring (S4R) building units of zeolites. There is a structural difference between these two molecules. In the case of $[(Ph_2Si\{O_2P(O)OSiMe_3\})_2]$, the trans trimethylsilyloxy groups on phosphorus atoms point axially with respect to the central Si_2O_4 plane and the terminal P=O groups are directed equatorially. In the case of $[(^tBu_2Si\{O_2P(O)Ph\})_2]$, the terminal P=O oxygen atoms are in an axial position and phenyl groups are situated in equatorial positions. This is probably due to steric differences between trimethylsilyloxy and phenyl groups.¹² The formation of ring- and cage-containing oligomers is known to prevent gelation to highly crosslinked networks in organotrialkoxysilanes.

compound	$[(Ph_2Si\{O_2P(O)OSiMe_3\})_2]$
empirical formula	C ₃₇ H ₄₈ O ₈ P ₂ Si ₄
fw	795.05
crystal system	Monoclinic
space group	$P 2_l/n$
temperature, K	120(2)
λ, Å	0.71073
a, Å	10.2590(3)
b, Å	11.6835(3)
<i>c</i> , Å	16.8330(4)
α , deg	90
<i>β</i> , deg	92.200(2)
γ, deg	90
<i>V</i> , Å ³	2016.13(9)
Ζ	2
μ , mm ⁻¹	0.275
no. of reflns collected	7506
no. of indep. reflns (R_{int})	3682 (0.0121)
no. of data / restraints / parameters	3682 / 51 / 266
GoF on F^2	1.112
$R_1,^{\mathrm{a}} w R_2^{\mathrm{b}} (I > 2\sigma(I))$	0.0306, 0.0882
R_{1} , ^a wR_{2} ^b (all data)	0.0383, 0.0906
largest diff. peak / hole, e·Å ⁻³	0.373 and -0.320

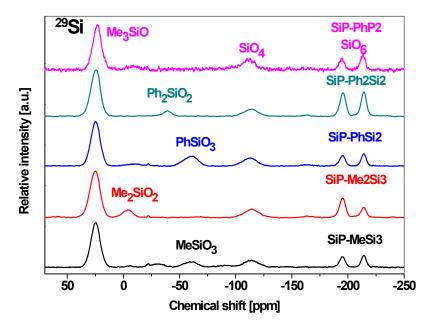
Tab. 3S: Crystal data and structure refinement parameters.

^a $R_1 = \Sigma ||F_0| - |F_c|| / \Sigma |F_0|$. ^b $wR_2 = [\Sigma w (F_0^2 - F_c^2)^2 / \Sigma (F_0^2)^2]^{1/2}$.

Tab. 4S: Selected bond distances and bond angles for $[(Ph_2Si{O_2P(O)OSiMe_3})_2]$

P(1)=O(4)	
P(1)-O(2)	
P(1)-O(1)	
P(1)-O(3)	
Si(1)-O(3)#1	
Si(1)-O(1)	
Si(1)-C(1)	
Si(1)-C(7)	
O(1)-P(1)-O(3)	
O(3)#1-Si(1)-O(1)	
P(1)-O(1)-Si(1)	
P(1)-O(3)-Si(1)#1	

2. Co-condensation of Si(OAc)₄ and OP(OSiMe₃)₃ partially substituted with $R_nSi(OAc)_{4-n}$ (n = 1,2; R= Me, Ph) and PhP(O)(OSiMe₃)₂


As an example, syntheses and characterizations of samples based on **SiP** xerogel (Si(OAc)₄ + TTP) with 10.37 % of Si(OAc)₄ substituted by $Me_2Si(OAc)_2$ (**SiP-Me2SiP2**) and with 12.63 % TTP substituted by PhP(O)(OSiMe_3)₂ (**SiP-PhP1**) are described below. Pertinent data for other samples are listed in Tab. 4S.

SiP-Me2SiP2. OP(OSiMe₃)₃ (0.8843 g; 2.814 mmol) was added dropwise to a stirred solution of Si(OAc)₄ (0.5284 g, 1.999 mmol) and Me₂Si(OAc)₂ (0.0392 g; 0.222 mmol) in toluene (9 cm³). After the addition was complete, stirring was stopped and the reaction mixture was kept at 80 °C for one week. The gel formed in the reaction mixture within few hours. The gel was then dried under vacuum for two days and 0.6383 g of a white xerogel (**SiP-Me2SiP2**) was obtained.

IR (SiP-Me2SiP2, KBr, cm⁻¹) v : v 591 m, 652 w ($v SiC_3$), 764 w ($\rho_s SiCH_3$), 853 s ($\rho_{as} SiCH_3$), 1023 vs (ρ CH₃), 1050 vs (v Si-O-P), 1121 vs (v P-O-Si), 1259 vs ($\delta_s SiCH_3$), 1303 sh (v P=O), 1373 w ($\delta_s CH_3$), 1418 vw ($\delta_{as} CH_3$), 1543 w ($v_{as} COO$ bident), 1718 vw ($v_{as} CH_3COO$ unident), 1768 m ($v_{as} CH_3COO$ unident), 2907 vw ($v_s CH_3$), 2964 w ($v_{as} CH_3$).

¹³C CPMAS NMR (**SiP-Me2SiP2**, ppm) δ : 0.5 (SiCH₃), 16.6 (CH₃COO bident), 22.9 (CH₃COO unident), 167.8 (CH₃COO unident), 191.7 (CH₃COO bident).

²⁹Si MAS NMR (**SiP-Me2SiP2**, ppm) δ : 25 (POSiMe₃), -5 (Me₂SiO₂), -115 (SiO₄), -195 (SiO₆), -214 (SiO₆).

³¹P MAS NMR (**SiP-Me2SiP2**, ppm) δ : -30 sh (O=*P*(OSi)₃), -43 (*P*(OSi)₄).

Fig. 5S: ²⁹Si CPMAS NMR spectra of samples with partially substituted silicon acetate with alkyl- and arylacetoxysilanes and PhP(O)(OSiMe₃)₂.

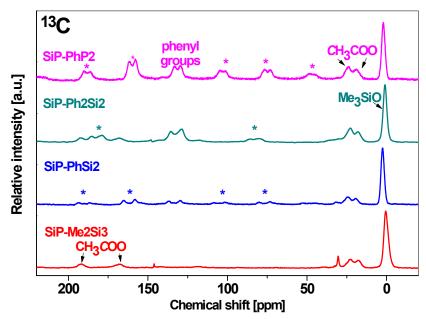


Fig. 6S: ¹³C CPMAS NMR spectra of samples with partially substituted silicon acetate with alkyl- and arylacetoxysilanes and PhP(O)(OSiMe₃)₂. Asterisks denote spinning sidebands.

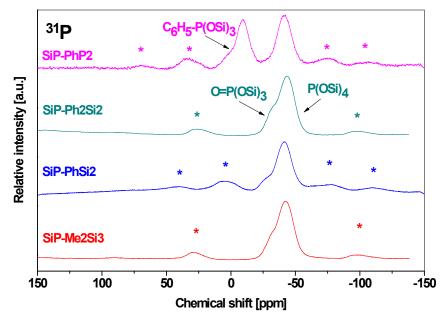


Fig. 7S: ³¹P MAS NMR spectra of samples with partially substituted silicon acetate with alkyl- and arylacetoxysilanes and PhP(O)(OSiMe₃)₂. Asterisks denote spinning sidebands.

SiP-PhP1. OP(OSiMe₃)₃ (0.978 g; 3.11 mmol) was added dropwise to a stirred solution of Si(OAc)₄ (0.670 g; 2.54 mmol) in toluene (12 cm³). After the addition of TTP was complete, PhP(O)(OSiMe₃)₂ (0.136 g; 0.450 mmol) was added dropwise to a reaction mixture, which provided a milky gel within 3 hours. The reaction mixture was kept at 80 °C for one week and then dried *in vacuo* affording 0.671 g of a yellowish xerogel (**SiP-PhP1**).

IR (**SiP-PhP1**, KBr, cm⁻¹) v: 501 m, 655 w (v SiC₃), 694 w, 760 w (ρ_s SiCH₃), 856 s (ρ_{as} SiCH₃), 1021 vs (ρ CH₃), 1095 vs (v Si–O–P), 1151 vs (v P–O–Si), 1261 s (δ SiCH₃), 1310 sh (v P=O), 1371 w (δ_s CH₃), 1443 w (δ_{as} CH₃), 1542 w (v CH₃COO bident), 1718 w (v CH₃COO unident), 1765 w (v CH₃COO unident), 2903 vw (v_s CH₃), 2964 w (v_{as} CH₃), 3063 vw (v_{as} C_{ar}H).

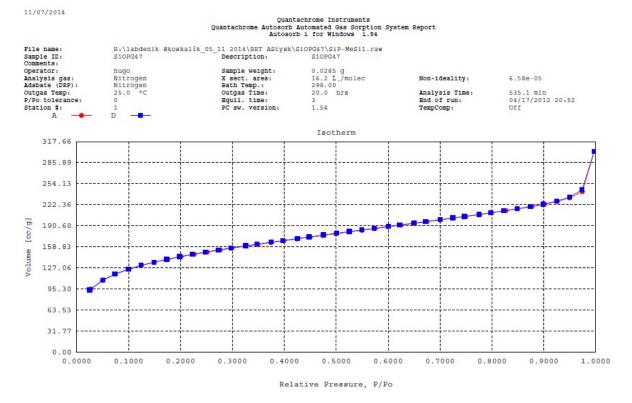
¹³C CPMAS NMR (**SiP-PhP1**, ppm) δ : 3.1 (POSiCH₃), 19.9 (CH₃COO bident), 25.2 (CH₃COO unident), 126–140 (C₆H₅).

²⁹Si MAS NMR (**SiP-PhP1**, ppm) δ : 23 (POSiMe₃), -112 (SiO₄), -194 (SiO₆), -213 (SiO₆).

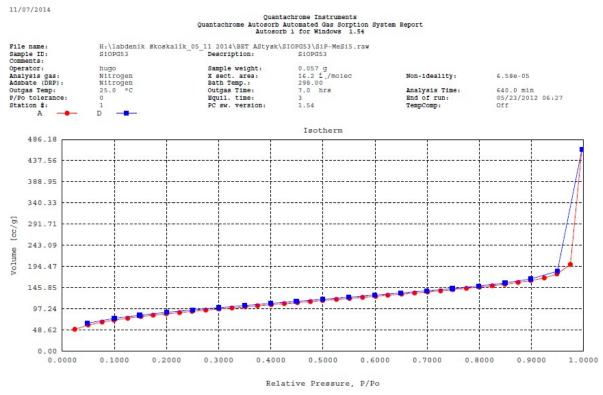
³¹P MAS NMR (**SiP-PhP1**, ppm) δ :-41 (P(OSi)₄), -9 (PhP(OSi)₃), 1 sh (PhP(O)(OSi)₂).

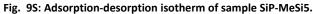
Tab. 5S: Co-condensation of Si(OAc)₄ and OP(OSiMe₃)₃ partially substituted with R_nSi(OAc)_{4-n} (n = 1,2; R= Me, Ph) and PhP(O)(OSiMe₃)₂,: Reagent molar amounts, yields, degrees of condensation (DC) and comparison of experimental (ML) and calculated mass losses (ML_{calc}) during thermogravimetric analysis of xerogels with partially substituted Si(OAc)₄ or OP(OSiMe₃)₃.

Sample	n _{si(OAc)4} [mmol]	n _{OP(OSiMe3)3} [mmol]	nª [mmol]	Yield [g]	DC [%]	ML [%]	ML _{calc} [%]
SiP	11.93	15.84	-	2.733	85.7	29.4	32.8
SiP-MeSi1	1.92	2.89	0.17	0.547	79.2	35.3	41.4
SiP-MeSi2	1.88	2.81	0.27	0.542	80.7	31.6	39.7
SiP-MeSi3	1.96	3.06	0.37	0.568	82.0	30.6	38.0
SiP-MeSi4	1.94	3.12	0.53	0.575	83.8	29.1	35.6
SiP-MeSi5	1.68	3.79	1.57	0.613	91.0	31.5	24.1
SiP-Me2Si1	3.57	4.88	0.20	1.064	74.8	26.6	46.0
SiP-Me2Si2	1.46	2.05	0.17	0.367	85.3	29.9	33.5
SiP-Me2Si3	1.90	2.73	0.29	0.457	88.2	36.5	27.1
SiP-Me2Si4	1.95	2.86	0.40	0.522	84.9	29.1	34.0
SiP-Me2Si5	1.74	2.63	0.49	0.317	87.5	28.6	-
SiP-Me2Si6	1.80	2.80	0.61	0.539	83.1	30.2	36.4
SiP-PhSi1	1.97	3.17	0.56	0.622	83.7	34.6	39.2
SiP-PhSi2	1.99	3.88	1.26	0.854	81.0	34.9	44.7

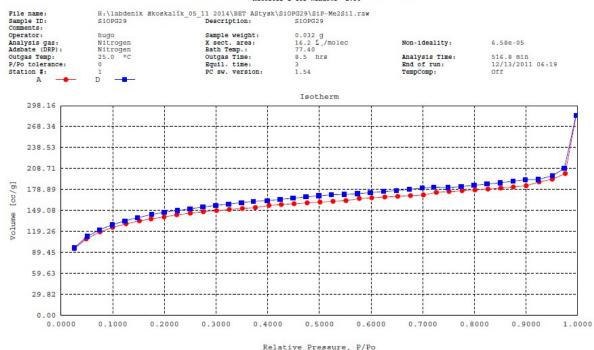

SiP-Ph2Si1	2.15	2.94	0.17	0.598	81.0	33.6	41.5
SiP-Ph2Si2	2.21	3.32	0.52	0.727	80.3	38.0	45.3
SiP-PhP1	2.54	3.11	0.45	0.671	83.0	28.2	39.6
SiP-PhP2	2.63	2.22	1.98	0.777	87.3	47.3	41.2

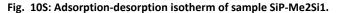
^aAmount of added organoacetoxysilane/phosphonate component

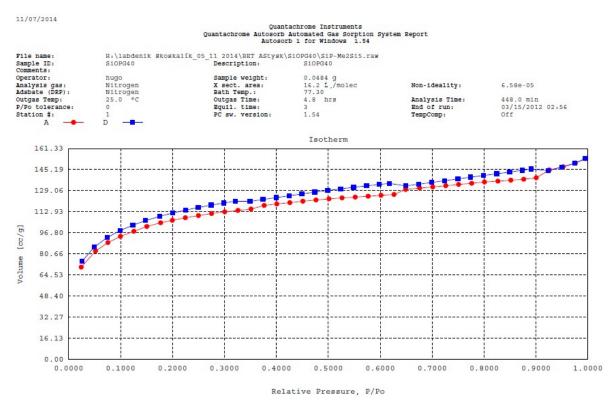

Tab. 6S: Textural properties of hybrid xerogels with partially substituted $Si(OAc)_4$ with $R_nSi(OAc)_{4-n}$ or OP(OSiMe₃)₃ with RP(O)(OSiMe₃)₂

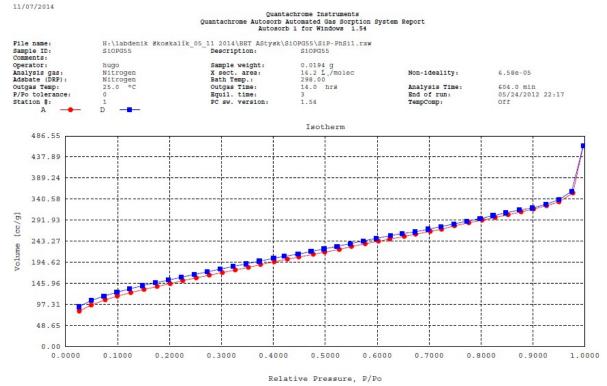

Sample	Additive ^a	Amount of additive [mol%]	SA ^b [m ² g ⁻¹]	V _{total} c [cm ³ g ⁻¹]	V _{micro} d [cm ³ g ⁻¹]	D ^e [nm]	MP ^f [%]
SiP	-	0.00	568	0.280	0.188	2.0	67
SiP-MeSi1	MeSi(OAc) ₃	8.28	529	0.375	0.114	2.9	30
SiP-MeSi2	MeSi(OAc) ₃	12.58	525	0.384	0.093	3.0	24
SiP-MeSi3	MeSi(OAc) ₃	15.97	528	0.344	0.128	2.6	37
SiP-MeSi4	MeSi(OAc) ₃	21.54	517	0.489	0.004	3.8	1
SiP-MeSi5	MeSi(OAc) ₃	48.26	313	0.550	0.000	4.0	0
SiP-Me2Si1	Me ₂ Si(OAc) ₂	5.38	522	0.313	0.153	2.4	49
SiP-Me2Si2	Me ₂ Si(OAc) ₂	10.37	382	0.217	0.117	2.3	54
SiP-Me2Si3	Me ₂ Si(OAc) ₂	13.19	357	0.211	0.105	2.5	50
SiP-Me2Si4	Me ₂ Si(OAc) ₂	16.86	380	0.244	0.123	2.5	50
SiP-Me2Si5	Me ₂ Si(OAc) ₂	21.96	389	0.233	0.113	2.4	48
SiP-Me2Si6	Me ₂ Si(OAc) ₂	25.22	547	0.274	0.175	2.0	64
SiP-PhSi1	PhSi(OAc)₃	22.22	558	0.550	0.000	4.0	0
SiP-PhSi2	PhSi(OAc)₃	38.81	251	0.188	0.047	3.0	25
SiP-Ph2Si1	Ph ₂ Si(OAc) ₂	7.32	392	0.357	0.005	3.7	1
SiP-Ph2Si2	Ph ₂ Si(OAc) ₂	19.05	101	0.102	0.000	4.7	0
SiP-PhP1	PhP(O)(OSiMe ₃) ₂	12.63	436	0.209	0.140	2.0	67
SiP-PhP2	PhP(O)(OSiMe ₃) ₂	47.10	424	0.232	0.136	2.2	59

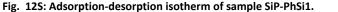
^a Added $R_nSi(OAc)_{4-n}$ (n = 1,2; R = Me, Ph) or PhP(O)(OSiMe₃)₂ components, ^b Surface area, ^c Total pore volume at p/p₀ = 0.97, ^d Micropore volume by t-plot, ^e Average pore diameter (4V_{total}/SA), ^f Ratio of micropore volume to total pore volume

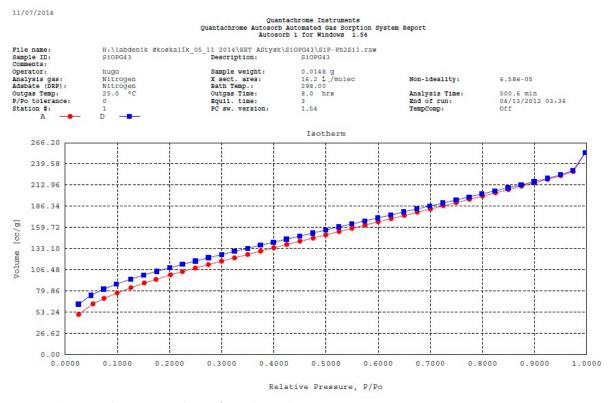







Quantachrome Instruments Quantachrome Autosorb Automated Gas Sorption System Report Autosorb 1 for Windows 1.54





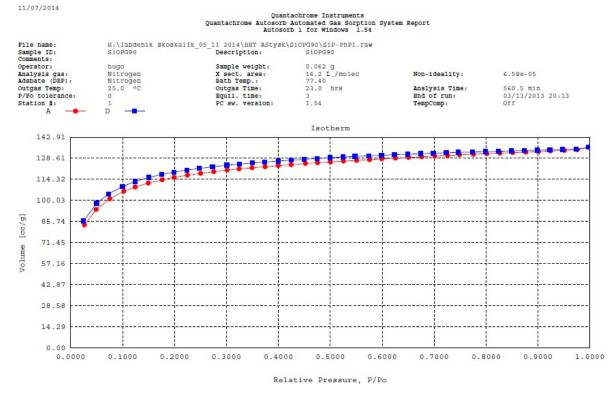


Fig. 14S: Adsorption-desorption isotherm of sample SiP-PhP1.

3. Bridged acetoxysilanes and phosphonic acid esters

As an example, syntheses and characterizations of the **SiC2SiP** sample with a CH_2CH_2 spacer between silicon atoms and the **SiPC6P** sample with C_6H_4 between phosphorus centers are described below. Pertinent data for other samples are listed in Tab. 5S.

SiC2SiP. OP(OSiMe₃)₃ (0.704 g; 2.24 mmol) was added dropwise to a stirred solution of (AcO)₃SiCH₂CH₂Si(OAc)₃ (0.471 g; 1.07 mmol) in toluene (10 cm³). After the addition was complete, stirring was stopped and the reaction mixture was kept at 80 °C for one week. The reaction mixture provided a milky rigid gel overnight. The reaction was stopped after one week and dried *in vacuo* affording 0.387 g of a white xerogel (**SiC2SiP**).

IR (SiC2SiP, KBr, cm⁻¹) v : v 490 m, 608 vw, 639 vw ($v SiC_3$), 763 m ($\rho_s SiCH_3$), 790 sh, 851 m (ρ_{as} SiCH₃), 1018 vs (v Si-O-P), 1175 m, 1231 w, 1259 m ($\delta_s SiCH_3$), 1313 s (v P=O), 1374 vw ($\delta_s CH_3$), 1406 vw, 1601 vw, 1754 m (v_{as} CH3COO unident), 2906 vw ($v_s CH_3$), 2963 w ($v_{as} CH_3$).

¹³C CPMAS NMR (**SiC2SiP**, ppm) δ : 1.2 (POSiCH₃), 3.7 shoulder (SiCH₂CH₂Si), 22.3 (CH₃COO unident), 170.6 (CH₃COO unident).

²⁹Si MAS NMR (**SiC2SiP**, ppm) δ : 26 (POS*i*Me₃), -65 (O₃S*i*CH₂CH₂S*i*O₃).

³¹P MAS NMR (**SiC2SiP**, ppm) δ : -37 (O=*P*(OSi)₃).

SiPC6P. A solution of $(Me_3SiO)_2P(O)C_6H_4P(O)(OSiMe_3)_2$ (2.008 g; 3.812 mmol) in toluene (5 cm³) was added dropwise to a stirred solution of Si(OAc)_4 (1.005 g; 3.803 mmol) in toluene (12 cm³). After the addition was complete, stirring was stopped and the reaction mixture was kept at 80 °C for one week. The reaction mixture provided a milky rigid gel overnight. The reaction was stopped after one week and dried *in vacuo* affording 1.471 g of a white xerogel (**SiPC6P**).

IR (**SiPC6P**, KBr, cm⁻¹) v: 437 w, 534 m, 608 m, 765 w (ρ_s SiCH₃), 855 s (ρ_{as} SiCH₃), 1019 vs (ρ CH₃), 1082 vs (v Si-O-P), 1154 vs (v P-O-Si), 1261 s (δ_s SiCH₃), 1286 sh (v P=O), 1374 w (δ_s CH₃), 1419, 1542 w (v_s CH₃COO bident), 1716 (v_{as} CH₃COO unident) 1765 (v_{as} CH₃COO unident), 2906 vw (v_s CH₃), 2964 w (v_{as} CH₃), 3030 vw (v C_{ar}-H).

¹³C CPMAS NMR (**SiPC6P**, ppm) δ : 3.1 (POSiCH₃), 19.9 (CH₃COO bident), 24.6 (CH₃COO unident), 133.9 (C₆H₄).

²⁹Si MAS NMR (**SiPC6P**, ppm) δ : 25 (POSiMe₃), -108 (SiO₄), -195 (SiO₆), -214 (SiO₆).

³¹P MAS NMR (**SiPC6P**, ppm) δ : -11 (-C₆H₄P(OSi)₃), -1 sh (-C₆H₄P(O)(OSi)₂).

Tab. 7S: Bridged acetoxysilanes and phosphonic acid esters: Reagent molar amounts, yields, degrees of condensation (DC) and comparison of experimental (ML) and calculated mass losses (ML_{calc}) during thermogravimetric analysis of xerogels with bridging organic groups.

Sample	n _{si} [mmol]	n _₽ [mmol]	Yield [g]	DC [%]	ML [%]	ML _{calc} [%]
SiC1SiP	1.76	3.52	0.654	85.6	27.2	29.3
SiC2SiP	1.07	2.24	0.387	78.1	35.3	27.4
SiC3SiP	2.18	4.38	0.831	88.5	36.8	31.3
SiC6SiP	1.02	2.03	0.381	-	45.9	-
SiPC2P	2.44	2.45	0.738	83.6	31.9	32.9
SiPC6P	3.80	3.81	1.471	77.0	33.9	47.7

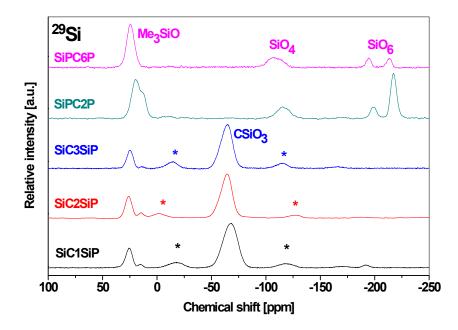


Fig. 15S: ²⁹Si CPMAS NMR spectra of samples synthesized with bridged acetoxysilanes and phosphonic acid esters. Asterisks denote spinning sidebands.

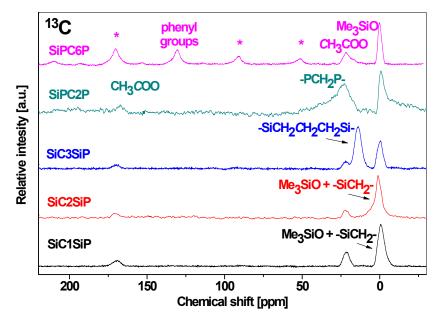


Fig. 16S: ¹³C CPMAS NMR spectra of samples synthesized with bridged acetoxysilanes and phosphonic acid esters. Asterisks denote spinning sidebands.

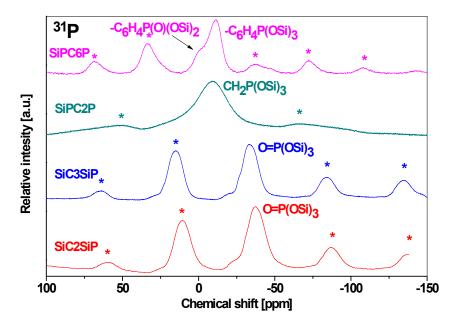


Fig. 17S: ³¹P MAS NMR spectra of samples synthesized with bridged acetoxysilanes and phosphonic acid esters. Asterisks denote spinning sidebands.

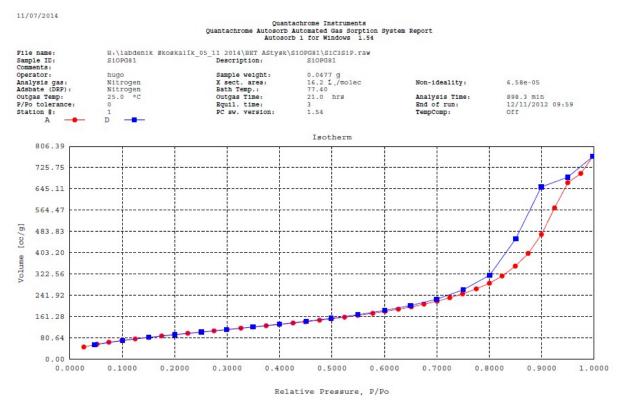
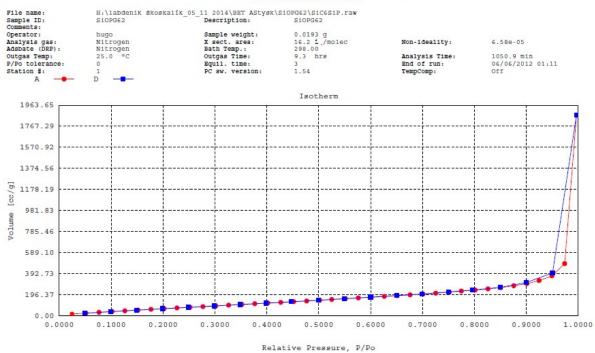



Fig. 18S: Adsorption-desorption isotherm of sample SiC3SiP.

Quantachrome Instruments Quantachrome Autosorb Automated Gas Sorption System Report Autosorb 1 for Windows 1.54

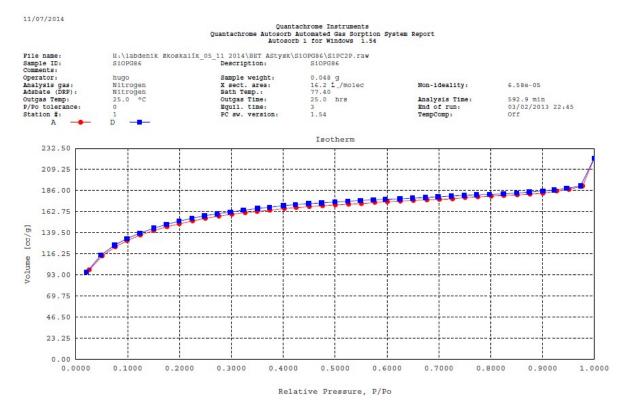


Fig. 20S: Adsorption-desorption isotherm of sample SiPC2P.

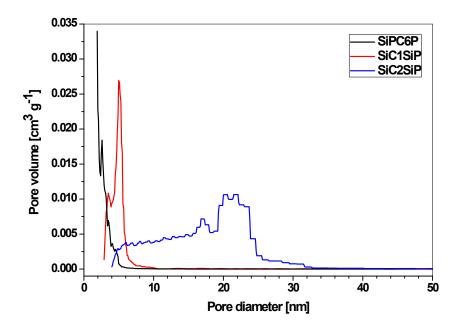


Fig. 21S: Pore size distributions of xerogels with bridging organic spacers (DFT Kernel Used : N₂ at 77 K on silica, cylindrical pore, NSDFT equilibrium model).

References

- 1 J. H. Balthis, E. G. Rochow and D. G. White, in *Inorganic Syntheses*, ed. J. C. B. Jr, John Wiley & Sons, Inc., 2007, pp. 45–47.
- 2 H. A. Schuyten, J. W. Weaver and J. D. Reid, J. Am. Chem. Soc., 1947, 69, 2110–2112.
- 3 Y. Nakaido and T. Takiguchi, J. Org. Chem., 1961, 26, 4144–4145.
- 4 Dolgov, B. N., Davydova, V. P. and Voronkov, M. G., *ZHURNAL OBSHCHEI KHIMII*, 1957, **27**, 921–926.
- 5 M. Sekine, K. Okimoto, K. Yamada and T. Hata, J. Org. Chem., 1981, 46, 2097–2107.
- 6 Z. Wang, J. M. Heising and A. Clearfield, J. Am. Chem. Soc., 2003, 125, 10375–10383.
- 7 S. Freeman, W. J. Irwin and C. H. Schwalbe, J. Chem. Soc. Perkin Trans. 2, 1991, 263–267.
- 8 J. Rouquerol, F. Rouquerol and K. S. W. Sing, *Adsorption by Powders and Porous Solids*, Academic Press, 1998.
- 9 S. Lowell, *Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density*, Springer, 2004.
- 10 J. W. Yao, J. C. Cole, E. Pidcock, F. H. Allen, J. A. K. Howard and W. D. S. Motherwell, *Acta Crystallogr. B*, 2002, **58**, 640–646.
- 11 G. M. Sheldrick, Acta Crystallogr. A, 2007, 64, 112–122.
- 12 Y. Vaugeois, R. D. Jaeger, J. Levalois-Mitjaville, A. Mazzah, M. Wörle and H. Grützmacher, *New J. Chem.*, 1998, **22**, 783–785.