Supporting Information

The Co-crystal of TNT/CL-20 leads to Decreased Sensitivity toward

Thermal Decomposition from First Principles Based Reactive

Molecular Dynamics

Dezhou Guo, ^{a,b} Qi An, ^b Sergey V. Zybin, ^b William A. Goddard III FRSC ^{b,*}, Fenglei Huang, ^a and Bin Tang ^b

a State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, People's Republic of China.

b Materials and Process Simulation Center, 139-74, California Institute of Technology, Pasadena, California 91125, USA.

* Corresponding author: email: <u>wag@wag.caltech.edu.</u>

Table S₁. Bond order cut-off values for different atom pairs. *BondFrag* program uses these values as a default parameter set (can be adjusted by the user) to determine molecular fragments.

	С	Н	0	N
С	0.55	0.40	0.80	0.30
Н		0.55	0.40	0.55
0			0.65	0.55
Ν				0.45

Figure S₁. Evolution of potential energy in the NVT MD simulations of CL-20, cocrystal and TNT. The initial potential energy is set to zero as a reference. For CL-20 and the cocrystal, the rate of potential energy decrease depends strongly on the temperature; whereas TNT does not react significantly under the conditions studied here. At each temperature, the energy release rate of CL-20 is faster than that of cocrystal, which is much faster than TNT.

Figure S₂. Evolution of intermediate and secondary products of cocrystal and CL-20 of NVT MD. chemical reactions occur more intensely in CL-20 than in cocrystal at each temperature. NO₂ is the dominant products in the early stage of CL-20 dissociation.

Figure S₃. Time evolution of three types of carbon clusters formed for cocrystal and CL-20 during NVT-MD simulation. More and larger carbon-rich aggregates are observed in cocrystal than CL-20, leading to a slower chemical reaction process.

Figure S₄. Normalized potential energy and temperature as a function of time during the NVE-MD with initial temperatures T = 1200, 1500, 1750 and 2000 K. The initial potential energy is set to zero as a reference.

Figure S_5 . Time evolution of chemical products during the NVE-MD after heating to1200, 1500, 1750 and 2000 K.

Figure S_6 . Time evolution of three types of carbon cluster formed during NVE-MD for cocrystal and CL-20.

Figure S₇**.** Evolution of intermediate and secondary products of mixture and cocrystal during NVT-MD simulations.