Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2015

Supporting Information

Synthesis of Graphene@Fe₃O₄@C Core-Shell Nanosheets for High-Performance Lithium Ion Batteries

Zehui Zhang^{1,‡}, Fei Wang^{2,‡}, Qiao An¹, Wei Li^{2,*}, and Peiyi Wu^{1,*}

¹ Department of Macromolecular Science, and State Key Laboratory of Molecular

Engineering of Polymers, Fudan University, Shanghai 200433, P. R. China

²Department of Chemistry and Laboratory of Advanced Materials, Fudan University,

Shanghai 200433, China

*E-mail: <u>peiyiwu@fudan.edu.cn</u>, <u>li_w10@fudan.edu.cn</u>

Figure S1. FESEM images of the graphene@Fe₃O₄@C core-shell nanosheets.

Figure S2. FESEM (a, b) and TEM (c, d) images of the $Fe_3O_4@C$ core-shell nanospheres.

Figure S3. TEM images of the graphene@Fe₃O₄@C core-shell nanosheets.

Figure S4. The energy dispersive X-ray spectrum (EDX) spectrum of the graphene@ $Fe_3O_4@C$ core-shell nanosheets.

Figure S5. HRTEM images of the graphene@Fe₃O₄@C core-shell nanosheets.

Figure S6. High-resolution XPS spectra of C 1s from GO and thermal-reduced graphene sheets.

Figure S7. TEM and HRTEM images of the graphene@ $Fe_3O_4@C$ nanosheets prepared by hydrothermal treatment of ferrocene with different concentrations: (a, b) 0.03 g, (c, d) 0.05 g, and (e) 0.09 g.

Figure S8. (A) Charge/discharge curves of the $Fe_3O_4@C$ (a) and Fe_3O_4 nanosphere electrodes at a current density of 100 mA/g.

Strategies	Typical examples	Electrochemical properties	Ref.
Graphene hybridization	Graphene@Fe3O4@C core-shell nanosheets	1200 mAh g ⁻¹ after 100 cycles at a	Current
and carbon coating		current density of 0.2 A/g	work
Carbon nanocoating	Carbon-coated Fe ₃ O ₄ nanospindles	530 mAh g^{-1} after 80 cycles at a	1
		current density of 0.5 C	
	Carbon-coated Fe ₃ O ₄ nanorods	$808\ mAh\ g^{-1}$ after 100 cycles at a	2
		current density of 924 mA g ⁻¹	
	Fe ₃ O ₄ nanospheres within carbon matrix	712 mAh g^{-1} after 60 cycles at a	3
		current density of 200 mA g ⁻¹	
	Fe ₃ O ₄ @C matrix	$610~mAh~g^{-1}$ after 100 cycles at a	4
		current density of 50 mA g^{-1}	
	Mesoporous $Fe_3O_4@C$ submicrospheres	930 mAh g^{-1} after 50 cycles at a	5
		current density of 100 mA g ⁻¹	
	$\mathrm{Fe_3O_4}$ nanoparticles on hierarchical porous carbon	1462 mAh g^{-1} after 100 cycles at a	6
		current density of 100 mA g ⁻¹	
	Fe ₃ O ₄ @C hollow particles	864 mAh g^{-1} after 50 cycles at a	7
		current density of 1 A g^{-1}	

Table S1. Summary of the representative iron oxide/carbon anode materials for lithium-ion batteries for comparsion.

	Carbon encapsulated 3D hierarchical Fe_3O_4 spheres	960 mAh g^{-1} after 600 cycles at a	8
		current density of 1 A g^{-1}	
	Porous olive-like carbon decorated Fe ₃ O ₄	730 mAh g^{-1} after 235 cycles at a	9
		current density of 1500 mA g^{-1}	
	Fe ₃ O ₄ /carbon core-shell nanotubes	932 mAh g^{-1} after 10 cycles at a	10
		current density of 100 mA g^{-1}	
	Carbon-coated Fe ₃ O ₄ nanoflakes	740 mAh g $^{-1}$ after 10 cycles at a	11
		current density of 200 mA g^{-1}	
Hybridization with	3D graphene/Fe ₃ O ₄ aerogel	1100 mAh g^{-1} after 50 cycles at a	12
graphene		current density of 200 mA g^{-1}	
	3D Hierarchical Fe ₃ O ₄ /graphene composites	434 mAh g^{-1} after 50 cycles at a	13
		current density of 92.5 mA g^{-1}	
	3D Fe ₃ O ₄ /graphene foam	1059 mAh g^{-1} after 150 cycles at a	14
		current density of 93 mA g^{-1}	
	Graphene-encapsulated Fe ₃ O ₄ nanoparticles	650 mAh g $^{-1}$ after 100 cycles at a	15
		current density of 100 mA g^{-1}	
	Fe ₂ O ₃ /graphene aerogel	955 mAh g $^{-1}$ after 50 cycles at a	16
		current density of 100 mA $\rm g^{-1}$	
	Fe ₃ O ₄ nanocrystals@graphene composites	538.7 mAh g^{-1} after 30 cycles at a	17
		current density of 100 mA $\rm g^{-1}$	
	Fe ₃ O ₄ /graphene nanocomposite	1089 mAh g^{-1} after 100 cycles at a	18
		current density of 270 mA g^{-1}	
	Fe ₃ O ₄ /reduced graphene oxide nanocomposites	1000 mAh g $^{-1}$ after 30 cycles at a	19
		current density of 35 mA g^{-1}	
	$\mathrm{Fe}_3\mathrm{O}_4$ nanoparticle decorated graphene nanosheets	833 mAh g^{-1} after 133 cycles at a	20
		current density of 900 mA g^{-1}	

- W.-M. Zhang, X.-L. Wu, J.-S. Hu, Y.-G. Guo and L.-J. Wan, *Adv. Funct. Mater.*, 2008, 18, 3941-3946.
- 2. T. Zhu, J. S. Chen and X. W. Lou, J. Phys. Chem. C, 2011, 115, 9814-9820.
- 3. J. S. Chen, Y. Zhang and X. W. Lou, *ACS Appl. Mater. Interfaces*, 2011, 3, 3276-3279.
- 4. G. Chen, M. Zhou, J. Catanach, T. Liaw, L. Fei, S. Deng and H. Luo, Nano

Energy, 2014, 8, 126-132.

- Y. Gan, H. Gu, H. Xiao, Y. Xia, X. Tao, H. Huang, J. Du, L. Xu and W. Zhang, New J. Chem., 2014, 38, 2428-2434.
- L. Wang, L. Zhuo, C. Zhang and F. Zhao, *Chemistry A European Journal*, 2014, 20, 4308-4315.
- 7. C. Lei, F. Han, Q. Sun, W.-C. Li and A.-H. Lu, *Chemistry A European Journal*, 2014, 20, 139-145.
- X. Fan, J. Shao, X. Xiao, L. Chen, X. Wang, S. Li and H. Ge, *J. Mater. Chem. A*, 2014, 2, 14641-14648.
- 9. J. Zhu, K. Y. S. Ng and D. Deng, J. Mater. Chem. A, 2014, 2, 16008-16014.
- H. Xia, Y. Wan, G. Yuan, Y. Fu and X. Wang, J. Power Sources, 2013, 241, 486-493.
- 11. Y.-h. Wan, X.-q. Shi, H. Xia and J. Xie, *Mater. Res. Bull.*, 2013, 48, 47914796.
- 12. W. Chen, S. Li, C. Chen and L. Yan, Adv. Mater., 2011, 23, 5679.
- 13. X. Li, X. Huang, D. Liu, X. Wang, S. Song, L. Zhou and H. Zhang, *Journal of Physical Chemistry C*, 2011, 115, 21567-21573.
- W. Wei, S. Yang, H. Zhou, I. Lieberwirth, X. Feng and K. Muellen, *Adv. Mater.*, 2013, 25, 2909-2914.
- 15. J.-Z. Wang, C. Zhong, D. Wexler, N. H. Idris, Z.-X. Wang, L.-Q. Chen and H.-K. Liu, *Chemistry-a European Journal*, 2011, 17, 661-667.
- 16. L. Xiao, D. Wu, S. Han, Y. Huang, S. Li, M. He, F. Zhang and X. Feng, ACS

Appl. Mater. Interfaces, 2013, 5, 3764-3769.

- B. Li, H. Cao, J. Shao, M. Qu and J. H. Warner, *J. Mater. Chem.*, 2011, 21, 5069-5075.
- 18. F. Zhang, T. Zhang, X. Yang, L. Zhang, K. Leng, Y. Huang and Y. Chen, Energy Environ. Sci., 2013, 6, 1623-1632.
- 19. G. Zhou, D.-W. Wang, F. Li, L. Zhang, N. Li, Z.-S. Wu, L. Wen, G. Q. Lu and H.-M. Cheng, *Chem. Mater.*, 2010, 22, 5306-5313.
- 20. Y. Chen, B. Song, L. Lu and J. Xue, Nanoscale, 2013, 5, 6797-6803.