Electronic supplementary information (ESI) Mesoporous nanostructured Co₃O₄ derived from MOF template: a high-performance anode material for lithiumion batteries

Chao Li,^a Taiqiang Chen,^a Weijing Xu,^a Xiaobing Lou,^a Likun Pan,^a Qun Chen^a and Bingwen Hu*^a

^a Shanghai Key Laboratory of Magnetic Resonance, Department of Physics, Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, East China Normal University, Shanghai 200062, China. E-mail: bwhu@phy.ecnu.edu.cn.

Fig.S1 (a) XRD pattern of MOF-71 prepared from hydrothermal process. (b and c) TEM image of MOF-71 with two different scales.

Fig. S2 FT-IR spectrum of MOF-71@450N.

Fig. S3 TG curve of MOF-71@300N under air atmosphere.

Fig. S4 TG curve of MOF-71@450N under air atmosphere.

Fig. S5 (a) Low-magnification TEM image of MOF-71@450N materials. (b) High magnification TEM image of MOF-71@450N. (c) Lattice resolved TEM image of MOF-71@450N. (d) The SAED patterns taken from (c).

Fig. S6 Representative charge/discharge volatge profiles of MOF-71@450N anode at a current density of 200mA g⁻¹ from which more prominent plateaus compared with MOF-71@300N were observed.

Fig. S7 Coulombic efficiencies of MOF-71@450N anode when cycling at 200mA g⁻¹, from which a higher Coulombic efficiency of 82.34% in the 1st cycle compared with MOF-71@300N and nearly 100% Coulombic efficiency after 2nd cycle were observed.

Fig. S8 Nyquist plots for MOF-71@300N and MOF-71@450N at 30th cycles with 200 mA g⁻¹.

Fig. S9 The charge/discharge profiles in the first cycle of MOF-71@300N anode at different current rates, from which lower voltage platforms were shown at higher current rates for the discharge curves.

Fig.S10 (a and b) Ex-situ TEM images of MOF-71@300N electrodes taken from the fully charged states after 30 cycles with 200 mA g⁻¹.

Table S1. Surface areas, pore volumes and mean pore diameters of MOF-71@300N and MOF-71@450N.

Sample	Surface area	Pore volume	Mean pore diameter	
	$(m^2 g^{-1})$	$(cm^3 g^{-1})$	(nm)	
MOF-71@300N	59.0	0.4483	30.389	
MOF-71@450N	16.2	0.0619	15.253	

Table S2. Cycling performance of Co₃O₄ as anode material under similar conditions in recent papers.

Sample	Rate	Retention	Cycle number	Ref.
	(mA g ⁻¹)	capacity		
		(mA h g ⁻¹)		
Mesoporous Co ₃ O ₄ nanobelts	177	770	25	[13]
Double-shell Co ₃ O ₄ hollow	178	866	50	[17]
sphere				
porous Co ₃ O ₄ hollow rods	240	903	20	[45]
Mesoporous Co ₃ O ₄ nanowires	300	810	30	[12]
Co ₃ O ₄ nanomesh	300	800	50	[46]
Our work	200	913	60	-