Supporting Information

KFeSbTe₃: a quaternary chalcogenide aerogel for preferential adsorption of polarizable hydrocarbons and gases

Ejaz Ahmed and Alexander Rothenberger*

Physical Sciences and Engineering Division, King Abdullah University of Science and Technology Thuwal, Kingdom of Saudi Arabia

Supplementary Figures:

Figure S1 Powder XRD patterns; a) ternary phase K₃SbTe₃, b) predominantly amorphous nature of the aerogel KFeSbTe₃.

Figure S2 EDS results of the KFeSbTe₃ aerogel with SEM images in the inset.

Figure S3 Powder XRD pattern of the products after the solvothermal reaction.

Figure S4 Powder XRD pattern of the KFeSbTe₃ chalcogel after TGA.

Figure S5: Solid-state UV-Vis optical absorption spectra for KFeSbTe₃.

Absolute Pressure (mmHg)

Figure S6: Adsorption isotherms of CO₂, CH₄ and H₂ observed in KFeSbTe₃ at 263 K.

1		1 1 2	1	
Adsorbent	Surface Area	Toluene adsorption	Temperature	Ref
	m^2/g	mg/g	K	
MOF-177	2970	585	298	1
MIL-100(Fe)	>2000	630	303	2
ML-101	3980	1096	298	3
РСН	740	267	298	3
Y-zeolite	704	150	293	3
$Cu_3(BTC)_2$	1507	234	298	4
Activated carbon	990	109	298	5
13X-zeolite	440	16	298	5
Silica gel	535	143	298	5
KFe ₃ Co ₃ S ₂₁	558	276	298	6
KFe ₃ Y ₃ S ₂₂	461	119	298	6
KFe ₃ Eu ₃ S ₂₂	573	313	298	6
KFeSbTe ₃	652	856	293	This work

Table S1. Comparison of Toluene adsorption capacity in different porous materials.

Adsorbent	Surface Area	Temperature	Selectivity	Ref
	m^{2}/g	Κ	$CO_2/H_2, CO_2/CH_4$	
FAU-type zeolite	3213	298	18, NA	7
Cu-BTC	1600	298	60, 10	8
MOF-5 (IRMOF-1)	2304	296	25, 3	8
SIFSIX-2-Cu-i	735	298	33, 240	9
SIFSIX-3-Zn	250	298	>1800, 231	9
Mg ₂ (dobdc)	1800	313	800, NA	10
Chalcogel (Co, Ni- MoS ₄)	340	273	16, NA	11
Chalcogel-Pt-1 (PtGeS)	323	273	6, NA	12
Chalcogel-PtSb-1 (PtSbGeSe)	226	273	12, NA	12
Chalcogel (CoMo ₃ S ₁₃)	570	273	120, NA	13
KFeSbS ₃	636	273	217, 60	14
NaFeAsS ₃	505	273	188, 100	14
KFeSbTe ₃	652	273	121, 75	This work

Table S2. Comparison of CO_2/H_2 and CO_2/CH_4 selectivity in different porous materials.

Table S3. Empirical parameters from fitting of virial equation in KFeSbTe₃.

Constant	CO ₂	CH ₄	H ₂
Quantity absorbed (mmol/g)	1.356	0.0783	0.0488
Pressure (mmHg)	760	760	760
K (mmol/g/mmHg)	0.00562	7.07684x10 ⁻⁵	4.26593x10 ⁻⁵

Figure S7: Fitting of Henry's constant for CO₂, CH₄ and H₂ in KFeSbTe₃ chalcogel.

Statistics		Statistics	
CO ₂ at 273 K- adsorption		H ₂ at 2	273 K- adsorption
Number of Points	51	Number of Points	44
Degrees of Freedom	46	Degrees of Freedom	39
Reduced Chi-Sqr	1.14214	Reduced Chi-Sqr	13.81724
Residual Sum of Squares	52.53826	Residual Sum of Squares	538.87237
Adj. R-Square	0.99998	Adj. R-Square	0.99979
Fit Status	Succeeded(100)	Fit Status	Succeeded(100)

Statistics

CH₄ a	CH₄ at 273 K- adsorption		
Number of Points	38		
Degrees of Freedom	33		
Reduced Chi-Sqr	6.1629		
Residual Sum of Squares	203.37585		
Adj. R-Square	0.99988		
Fit Status	Succeeded(100)		

Figure S8: Statistics for the fitting of Henry's constant for CO_2 , CH_4 and H_2 in KFeSbTe₃ chalcogel.

X-ray photoelectron spectroscopy (XPS)

The XPS studies of the powder samples were carried out in a Kratos Axis Ultra DLD spectrometer equipped with a monochromatic Al-K α x-ray source (hv = 1486.6 eV) operating at 150 W, a multichannel plate and delay line detector under a vacuum of ~10⁻⁹ mbar. Measurements were performed in hybrid mode using electrostatic and magnetic lenses, and the take-off angle (angle between the sample surface normal and the electron optical axis of the spectrometer) was 0°. All spectra were recorded using an aperture slot of 300 µm×700 µm. The survey and high-resolution spectra were collected at fixed analyzer pass energies of 160 eV and 20 eV, respectively. Samples were mounted in floating mode in order to avoid differential charging. Charge neutralization was required for all samples. Binding energies were referenced to the sp³ hybridized (C-C,C-H) carbon for the C1s set at 285.0 eV.

However, due to very air-sensitive nature of the chalcogel, the sample could not be handled at our experimental core facilities. This is demonstrated by the color change from black to dark brown during attempted XPS measurement (Supporting information, Fig S9-10). However, indirect evidence for Fe(II) was obtained by powder XRD after thermal analysis where FeTe was detected (Supporting information, Fig. S4).

Figure S9: Photographic illustration of KFeSbTe₃ chalcogel before and after XPS studies.

Figure S10: Left; Survey spectrum for the powdered (decomposed) chalcogel KFeSbTe₃ and right; high-resolution XPS spectrum of Fe 2p core level.

References:

- 1. K. Yang, F. Xue, Q. Sun, R. Yue, D. Lin, J. Environ. Chem. Eng. 2013, 1, 713.
- 2. Y.-K. Seo, J. W. Yoon, J. S. Lee, U. H. Lee, Y. K. Hwang, C.-H. Jun, P. Horcajada, C. Serre and J.-S. Chang, *Microporous Mesoporous Mater.*, 2012, **157**, 137.
- 3. K. Yang, F. Xue, Q. Sun, D. Lin, J. Hazard. Mater. 2011, 195, 124.
- 4. F. J. Ma, S. X. Liu, D. D. Liang, G. J. Ren, F. Wei, Y. G. Chen and Z. M. Su, *J. Solid State Chem.*, 2011, **184**, 3034.
- 5. C. M. Wang, K. S. Chang, T. W. Chung and H. D. Wu, J. Chem. Eng. Data, 2004, 49, 527.

- 6. E. Ahmed and A. Rothenberger, Microporous Mesoporous Mater., 2014, 199, 74-82.
- 7. C. Ducrot-Boisgontier, J. Parmentier, A. Faour, J. Patarin and G. D. Pirngruber, *Energy Fuels*. 2010, 24, 3595.
- (a) Q. Yang and C. Zhong, J. Phys. Chem. B., 2006, 110, 17776. (b) Z. Zhao, Z. Li and Y. S. Lin, Ind. Eng. Chem. Res., 2009, 48, 10015.
- 9. P. Nugent, Y. Belmabkhout, S. D. Burd, A. J. Cairns, R. Luebke, K. Forrest, T. Pham, S. Ma, B. Space, L. Wojtas, M. Eddaoudi, M. J. Zaworotko, *Nature*, 2013, **495**, 80.
- 10. Z. R. Herm, J. A. Swisher, B. Smit, R. Krishna and J. R. Long, J. Am. Chem. Soc., 2011, 133, 5664.
- 11. S. Bag, A. F. Gaudette, M. E. Bussell and M. G. Kanatzidis, Nat. Chem., 2009, 1, 217-224.
- 12. S. Bag and M. G. Kanatzidis, J. Am. Chem. Soc., 2010, 132, 14951.
- 13. M. Shafaei-Fallah, A. Rothenberger, A. P. Katsoulidis, J. Q. He, C. D. Malliakas and M. G. Kanatzidis, *Adv. Mater.*, 2011, **23**, 4857.
- 14. E. Ahmed, J. Khanderi, D. H. Anjum and A. Rothenberger, Chem. Mater., 2014, 26, 6454.