Supporting Information

Lithiation/Delithiation Mechanism of Monodispersed $\mathbf{M S n}_{5}$ ($\mathrm{M}=\mathrm{Fe}, \mathrm{Co}$ and FeCo) Nanospheres

Fengxia Xin, ${ }^{\text {a }}$ Xiaoliang Wang, ${ }^{\text {b }}$ Jianming Bai, ${ }^{\text {c }}$ Wen Wen, ${ }^{\text {d }}$ Huajun Tian, ${ }^{\text {a Chunsheng }}$ Wang ${ }^{\mathrm{e}, *}$ and Weiqiang Han ${ }^{\mathrm{a}, *}$
${ }^{\text {aN }}$ Ningbo Institute of Materials Technology \& Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
${ }^{\mathrm{e}}$ Department of Chemical and Biomolecular Engineering University of Maryland College Park, MD 20742, USA
bPresent address: Seeo Inc., 3906 Trust Way, Hayward, CA 94545
'National Synchrotron Light Source, Brookhaven National Laboratory, Upton, New York 11973, United States
${ }^{\mathrm{d}}$ Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, P. R. China
Corresponding Author:
E-mail: hanweiqiang@nimte.ac.cn,cswang@umd.edu

Table S1 A Calculated Partial Reflection Table Containing Cell Length, Cell Angle, Cell Volume, Atom Site, Occupancy of $\mathrm{FeSn}_{5}, \mathrm{Fe}_{0.5} \mathrm{Co}_{0.5} \mathrm{Sn}_{5}$ and CoSn_{5}.

Compound	FeSn_{5}	$\mathrm{Fe}_{0.5} \mathrm{Co}_{0.5} \mathrm{Sn}_{5}$	CoSn_{5}
Rwp (\%)	3	8.7	2.9
Cell length (a)	6.9137	6.9188	6.9328
Cell length (b)	6.9137	6.9188	6.9328
Cell length (c)	5.8897	5.8777	5.7924
Cell angle	$\alpha=\gamma=90^{\circ}$	$28=\gamma=90^{\circ}$	$\alpha=\beta=\gamma=90^{\circ}$
Cell volume	$(0.5,0.5,0.25)$	$(0.5,0.5,0.25)$	278.792
Atom site (Fe)	$(0.5,0.5,0.25)$	$(0.5,0.5,0.25)$	
Atom site (Co)	$(0,0,0.5)$	$(0,0,0.5)$	$(0,0,0.5)$
Atom site (Sn1)	$(0.190,0.607,1 / 2)$	$(0.193,0.606,1 / 2)$	$(0.191,0.610,1 / 2)$
Atom site (Sn2)	0.74	0.345	
Occupancy(Fe)	1	0.345	0.83
Occupancy(Co)		1	1
Occupancy(Sn)			

Fig. S1 a-c) Cyclic voltammograms of the initial five cycles scanned at a rate of $0.02 \mathrm{mV} / \mathrm{s}$ between $0.01-2 \mathrm{~V}$ in $\mathrm{FeSn}_{5}, \mathrm{Fe}_{0.5} \mathrm{Co}_{0.5} \mathrm{Sn}_{5}$ and CoSn_{5} nanospheres electrode in Li -ion batteries.

Fig. $\mathbf{S 2}$ a-c) The EDS spectrum of $\mathrm{FeSn}_{5}, \mathrm{Fe}_{0.5} \mathrm{Co}_{0.5} \mathrm{Sn}_{5}$ and CoSn_{5} nanospheres after the first cycle.

Fig. S3 a) TEM and b) EDS images $\mathrm{Fe}_{0.5} \mathrm{Co}_{0.5} \mathrm{Sn}_{5}$ nanospheres after 100 cycles.

Fig. S4 Comparison of potential response of a) FeSn_{5} and b, c) $\mathrm{Fe}_{0.5} \mathrm{Co}_{0.5} \mathrm{Sn}_{5}$ and CoSn_{5} nanospheres anodes from GITT measurements in Li-ion batteries at $20 \mathrm{~mA} \mathrm{~g}^{-1}$, Before GITT measurement, the MSn_{5} intermetallics were pre-charged/discharged for 5 cycles to active the electrodes.

