Novel POSS-based Organic-Inorganic Hybrid Porous Materials by Low Cost Strategy

Shaolei Wang,^{*a*} Liangxiao Tan,^{*a*} Chengxin Zhang, ^{*a*} Irshad Hussain, ^{*c*} and Bien Tan*^{*a,b*}

Supporting Information

Figure S1 SEM image (a) and HRTEM image (b) of OPS.

Figure S2 Fourier transform infrared (FTIR) spectra of OPS and POPS-1.

Figure S3 Fourier transform infrared (FTIR) spectra of OPS and POPS-2.

Figure S4 Thermogravimetric analysis of OPS, POPS-1 and POPS-2.

Figure S5 Volumetric CO₂ sorption isotherms of samples up to 1.13 bar at 298.15 K.

Figure S6 Isosteric heat of adsorption for CO₂ at different CO₂ loadings.

Yield % =
$$\frac{m_1(g)}{m_2(g)} \times 100\%$$

Where m_1 is the weight of POPS-1 or POPS-2 measured after drying in a vacuum oven at 60 °C for 24 h.; m_2 is the weight of Octapheylsilsesquioxanes.

Equation S1 The yield estimation of POPS-1 and POPS-2