
Supplementary information

Magnetic Yolk-Shell Mesoporous Silica Microspheres with Supported Au Nanoparticles as Recyclable High-Performance Nanocatalysts

Qin Yue, ^a Yu Zhang, ^a Can Wang, ^a Xiqing Wang, ^a Zhenkun Sun, ^a Xiufeng Hou, ^a Dongyuan Zhao, ^a and Yonghui Deng*

^aDepartment of Chemistry, Advanced Materials Laboratory and State key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, P. R. China

Figure S1. The FT-IR spectra of (a) $Fe_3O_4@SiO_2$, (b) $Fe_3O_4@SiO_2@RF$, and (c) $Fe_3O_4@SiO_2@hollow mSiO_2$ (YS-320) after the calcination in air at 550 °C for 5 h. For the $Fe_3O_4@SiO_2@RF$, the bands observed at 1460-1480 cm⁻¹ and 1620 cm⁻¹ attributed to the $-CH_2$ - group and the aromatic group of resorcinol-formaldehyde resins, respectively. After calcinations at 550 °C for 5 h in air, the adsorption peaks of RF resins almost disappeared for the $Fe_3O_4@SiO_2@hollow mSiO_2$ microspheres, suggesting that the RF resin was completely removed.

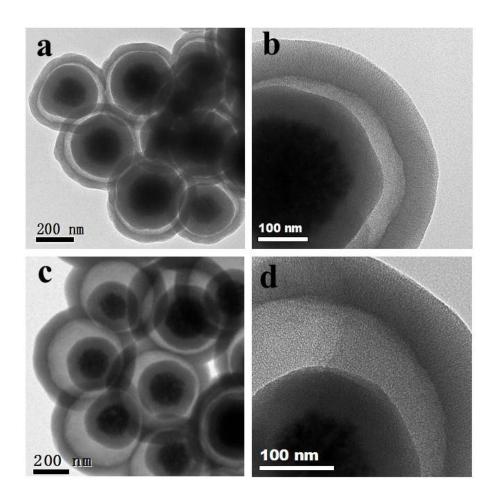
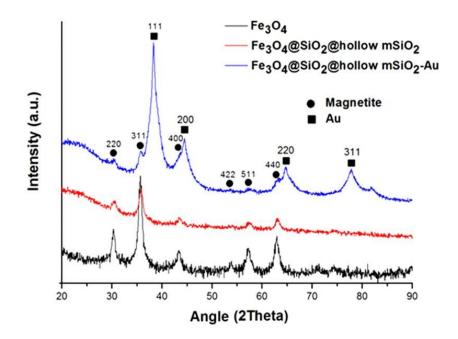



Figure S2. TEM images of the yolk-shell structured $Fe_3O_4@SiO_2@hollow mSiO_2$ microspheres (a, b) YS-370 and (c, d) YS-430 with different hollow space size of 370 and 160 nm and 430 nm, respectively.

Figure S3. Wide-angle XRD patterns of Fe₃O₄ particles, YS-320 and Fe₃O₄@SiO₂@hollow mSiO₂-Au microspheres (YS-320-Au).

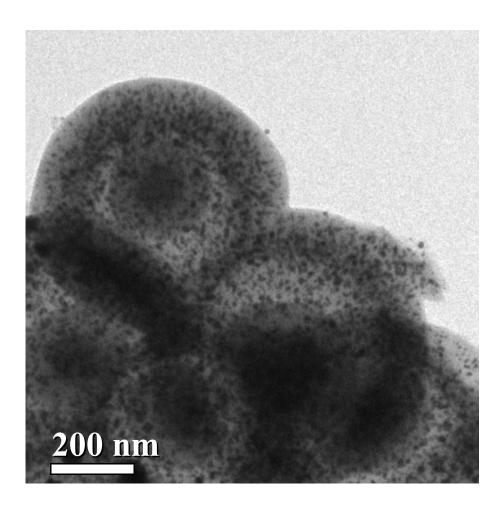


Figure S4. TEM image of the recycled YS-430-Au catalysts after catalyzing the styrene epoxidation for

12 times