A Universal Halogen-free Solvent System for Highly Efficient Polymer Solar Cells

Wenchao Zhao^{a,b†}, Long Ye^{a†}, Shaoqing Zhang^a, Mingliang Sun^{a,*}, and Jianhui Hou^{b,*}

- a. Institute of Material Science and Engineering, Ocean University of China, Qingdao 266100, P. R. China
- b. State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences
 Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China

[†] Wenchao Zhao and Long Ye contributed equally in this work.

E-mail: hjhzlz@iccas.ac.cn ; mlsun@ouc.edu.cn

Contents of Supporting Information

S1. Physical properties and solubility of polymer (PBDT-TS1) and fullerene in different solvents.

S2. *J-V* characteristics of PBDT-TS1:PC₇₁BM solar cells processed with different concentration NMP and 1-methylnaphthalene (Me-naph)

S3. *J-V* characteristics of XY/NMP processed PBDT-TS1:PC₇₁BM-based device with or without methanol treatment.

S4. Hansen parameters of PC71BM and different solvents

S5. The AFM and TEM images of PBDT-TS1:PC71BM blend films with different processing additive.

S6. *J-V* curves based on PSCs consist of various polymer: $PC_{71}BM$ blends utilizing different solvent as the processing solvent.

S7. The AFM and TEM images of eight other polymer: PCBM blend films casted from XY and XY/2% NMP.

S8. Device fabrication and measurements.

S9. Morphology and device stability tests of PBDT-TS1:PC₇₁BM-based PSCs cast from solutions of DCB/3% DIO and XY/2%NMP in 8 days.

S10. Photovoltaic device parameters of XY/NMP processed P3HT: $PC_{71}BM$ -based device with different concentration of NMP.

S1. Physical properties and solubility of polymer (PBDT-TS1) and fullerene in different solvent.

Solvents		DCB	DIO	o-xylene	NMP
Boiling p	point ^a (°C)	180.0	326	144.5	202.0
Solubility	PBDT-TS1	4	<1	1	<1
(mg/ml)	PC ₇₁ BM	203 ^b	<80	66.2 ^b	110

Table S1. Physical properties and solubility of polymer (PBDT-TS1) and fullerene in different solvent.

^aLaboratory Solvents and Other Liquid Reagents, in CRC Handbook of Chemistry and Physics, ed. D. R. Lide,

CRC Press/Taylor and Francis, Boca Raton, FL, 90th edn, Internet Version 2010. bRef S1.

S2. *J-V* characteristics of PBDT-TS1:PC₇₁BM solar cells processed with different concentration NMP and 1methylnaphthalene (Me-naph)

Fig. S1. *J-V* curves of the PSCs based on PBDT-ST1:PC₇₁BM with different volume amount of halogen-free processing additive (NMP) and Me-naph as the processing solvent additive under the illumination of AM 1.5, 100 mW/cm², respectively.

Table S2. Photovoltaic device parameters obtained from PSCs fabricated from different concentration of NMP as the processing solvent additive.

Additive	V_{oc} (V)	J_{sc} (mA/cm ²)	FF (%)	PCE_{avg} ^a (%)

	1%	0.80	14.97	52.71	6.31	
NMP	2%	0.79	17.02	67.85	9.12	
	4%	0.79	16.80	65.03	8.63	
	1%	0.80	17.16	62.92	8.64	
Me-naph	2%	0.80	17.10	64.33	8.80	
	4%	0.79	16.88	63.43	8.46	

^a The average PCE obtained from 10 devices.

S3. *J-V* characteristics of XY/NMP processed PBDT-TS1:PC₇₁BM-based device with or without methanol treatment.

Fig. S2. J-V curves of XY/NMP processed PBDT-TS1:PC71BM-based device with or without methanol treatment.

Table S3. Photovoltaic device parameters of XY/NMP processed PBDT-TS1:PC₇₁BM-based device with or without methanol treatment.

Methanol treatment	$V_{oc}(\mathbf{V})$	J_{sc} (mA/cm ²)	FF (%)	PCE _{avg} (%) ^{a)}
No	0.77	15.89	57.94	7.09
Yes	0.79	17.24	67.05	9.13

^a The average PCE obtained from 10 devices.

S4. Hansen parameters of PC71BM and different solvents

	Dispersion (δ_d)	Polarity (δ_p)	Hydrogen Bonding (δ_h)
solvent	(MPa ^{1/2})	(MPa ^{1/2})	(MPa ^{1/2})
DCB	19.2	6.3	3.3
DIO	17.6	4.8	4.6
XY	17.8	1.0	3.1
NMP	18.0	12.3	7.2
PC ₇₁ BM	20.2	5.4	4.5

Table S4. Hansen solubility parameters for DCB, DIO, XY, NMP and $PC_{71}BM$

Fig. S3 Hansen solubility parameter (HSP) diagrams of PC71BM and different solvents.

S5. The AFM and TEM images of PBDT-TS1:PC₇₁BM blend films with different processing additive.

Fig. S4 The AFM height (a, b), phase (c, d) and TEM images (e, f) of PBDT-TS1: PC₇₁BM films cast from XY/Me-naph and XY/NMP, respectively.

S6. *J-V* curves based on PSCs consist of various polymer:PC₇₁BM blends utilizing different solvent as the processing solvent.

Fig. S5 *J-V* curves based on PSCs consist of various polymer:PC₇₁BM blends (a-h) utilizing different solvent as the processing solvent; (i) The symbols (black, red, blue, green) represented the utilized processing solvents (DCB, DCB/3% DIO, XY, XY/2% NMP), respectively.

S7. The AFM and TEM patterns of eight other polymer:PC₇₁BM-blend films cast from solutions of XY and XY/2% NMP

Fig. S6 The AFM height (a, b) and phase (c, d) of PBDTT-EFT: $PC_{71}BM$ films made without using NMP (a, c) and with NMP (b, d) in the XY, TEM images of thin-film PBDTT-EFT: $PC_{71}BM$ blend cast from solutions of (e) XY only (f) 2% NMP in XY.

Fig. S7 The AFM height (a, b) and phase (c, d) of PBDTT-C-T: $PC_{71}BM$ films made without using NMP (a, c) and with NMP (b, d) in the XY, TEM images of thin-film PBDTT-C-T: $PC_{71}BM$ blend cast from solutions of (e) XY only (f) 2% NMP in XY.

Fig. S8 The AFM height (a, b) and phase (c, d) of PTB7: $PC_{71}BM$ films made without using NMP (a, c) and with NMP (b, d) in the XY, TEM images of thin-film PTB7: $PC_{71}BM$ blend cast from solutions of (e) XY only (f) 2% NMP in XY.

Fig. S9 The AFM height (a, b) and phase (c, d) of PBDTBDD-T: PC₇₁BM films made without using NMP (a, c) and with NMP (b, d) in the XY, TEM images of thin-film PBDTBDD-T:PC₇₁BM blend cast from solutions of (e) XY only (f) 2% NMP in XY.

Fig. S10 The AFM height (a, b) and phase (c, d) of PBDT-DPP: $PC_{71}BM$ films made without using NMP (a, c) and with NMP (b, d) in the XY, TEM images of thin-film PBDT-DPP: $PC_{71}BM$ blend cast from solutions of (e) XY only (f) 2% NMP in XY.

Fig. S11. The AFM height (a, b) and phase(c, d) of PDTG-IID: $PC_{71}BM$ films made without using NMP (a, c) and with NMP (b, d) in the XY, TEM images of thin-film PDTG-IID: $PC_{71}BM$ blend cast from solutions of (e) XY only (f) 2% NMP in XY.

Fig. S12 The AFM height (a, b) and phase(c, d) of PBDT-TPD: $PC_{71}BM$ films made without using NMP (a, c) and with NMP (b, d) in the XY, TEM images of thin-film PBDT-TPD: $PC_{71}BM$ blend cast from solutions of (e) XY only (f) 2% NMP in XY.

Fig. S13 The AFM height (a, b) and phase (c, d) of P3HT: $PC_{71}BM$ films made without using NMP (a, c) and with NMP (b, d) in the XY, TEM images of thin-film P3HT: $PC_{71}BM$ blend cast from solutions of (e) XY only (f) 2% NMP in XY.

S8. Device fabrication and measurements

For active layers, the fabrication details are listed in the **Table S5** and also obtained from the literatures.⁸²⁻⁸⁹ For instance, The PBDTTT-EFT: PC₇₁BM (1:1.5) composite was dissolved in *o*-chlorobenzene (DCB) or *o*-xylene (XY) stirring at 75 °C for 8 h, respectively. The concentration of PBDTTT-EFT and PC₇₁BM in DCB or XY solution is 10 and 15 mg/ml, respectively. 3% DIO (vol) or 2% NMP was added into the blend solution for morphology modulation. Prior to evaporating metal cathodes, methanol treats the BHJ films according to our recent report.^{S10} The device fabrication was completed by thermal evaporation of a 20 nm thick Mg and a 80 nm thick Al layer as cathode under vacuum at a base pressure of 1×10^{-4} Pa.

A otivo lovoro	D/A ratio	Salvant	Pof	Concentration of Polymer	Thickness
Active layers	D/A fatio	Sorvent	Kej.	(mg/ml)	(nm)
		DCB/DIO	52		
PBDTTT-EFT:PC71BM	1:1.5	(97/3)	52	10	90
		XY/NMP (98/2)			
PBDTTT-C-T:PC71BM	1:1.5	DCB/DIO (97/3)	S3	10	95
		XY/NMP (98/2)			
PBDTBDD-T:PC71BM	1:1	DCB/DIO (97/3)	S4	12	85
		XY/NMP (98/2)			
PTB7:PC ₇₁ BM	1:1.5	CB/DIO (97/3)	85	10	90
		XY/NMP (98/2)			
PBDT-DPP:PC71BM	1:2	DCB/DIO (99.5/0.5)	S6	6	100
		XY/NMP (98/2)		, v	
PDTG-IID:PC ₇₁ BM	1: 1	DCB/DIO (97/3)	S7	10	90

Table S5. The fabrication details of PSCs based on several efficient polymers.

		XY/NMP (98/2)			
PBDT-TPD:PC71BM	1:2	DCB/DIO (97/3)	S8	10	100
		XY/NMP (98/2)			
P3HT:PC ₆₁ BM	1:1	DCB/DIO	S9	17	200
		XY/NMP (98/2)			

S9. Morphology and device stability tests of PBDT-TS1:PC71BM-based PSCs cast from solutions of DCB/3%

DIO and XY/NMP in 8 days.

Figure S14. TEM images of thin-film PBDT-TS1:PC₇₁BM blend cast from solutions of DCB/3% DIO (a, b, c) and XY/NMP (d, e, f) every four days, respectively; (g) the corresponding PCE value plots in 8 days.

S10. Photovoltaic device parameters of XY/NMP processed P3HT: PC₇₁BM-based device with different concentration of NMP.

Table S6. Photovoltaic device parameters of XY/NMP processed P3HT: PC₇₁BM-based device with different concentration of NMP.

Additive	Additive Amount	V _{oc} (V)	J _{sc} (mA/cm ²)	FF (%)	PCE (%)
	1%	0.61	9.61	59.94	3.51
NMP	2%	0.61	10.47	60.56	3.87
	4%	0.61	9.69	58.40	3.45

References

[S1] K. R. Graham, P. M. Wieruszewski, R. Stalder, M. J. Hartel, J. G. Mei, F. So, J. R. Reynolds, *Adv. Funct. Mater.* 2012, 22, 4801-4813.

- [S2] S. Q. Zhang, L. Ye, W. C. Zhao, D. L. Liu, H. F. Yao and J. H. Hou, Macromolecules, 2014, 47, 4653-4659.
- [S3] L. J. Huo, S. Q. Zhang, X. Guo, F. Xu, Y. F. Li and J. H. Hou, Angew. Chem., Int. Ed., 2011, 50, 9697-9702.

[S4] D. Qian, L. Ye, M. Zhang, Y. Liang, L. Li, Y. Huang, X. Guo, S. Zhang, Z. Tan and J. Hou, *Macromolecules*, 2012, 45, 9611-9617.

[S5] Y. Y. Liang, Z. Xu, J. B. Xia, S. T. Tsai, Y. Wu, G. Li, C. Ray and L. P. Yu, *Adv. Mater.*, 2010, 22, E135-E138.

[S6] S. Q. Zhang, L. Ye, Q. Wang, Z. J. Li, X. Guo, L. J. Huo, H. L. Fan and J. H. Hou, J. Phys. Chem. C., 2013, 117, 9550-9557.

[S7] Q. Wang, S. Q. Zhang, L. Ye, Y. Cui, H. L. Fan and J. H. Hou, Macromolecules, 2014, 47, 5558-5565.

[S8] J. Warnan, A. El Labban, C. Cabanetos, E. T. Hoke, P. K. Shukla, C. Risko, J. L. Bredas, M. D. McGehee and P. M. Beaujuge, *Chem. Mater.*, 2014, **26**, 2299-2306.

[S9] G. Li, V. Shrotriya, J. S. Huang, Y. Yao, T. Moriarty, K. Emery and Y. Yang, Nat. Mater., 2005, 4, 864-868.

[S10] L. Ye, Y. Jing, X. Guo, H. Sun, S. Q. Zhang, M. J. Zhang, L. J. Huo and J. H. Hou, *J. Phys. Chem. C.*, 2013, **117**, 14920-14928.