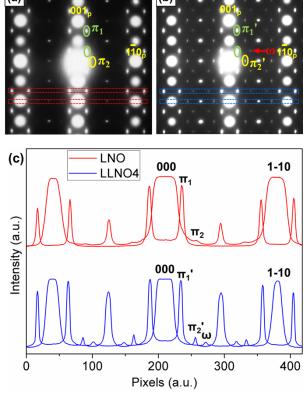

Electronic Supplementary Information for

Cation ordering in A-site-deficient Li-ion conducting perovskites La_{(1-x)/3}Li_xNbO₃


Xiang Gao, Craig A. J. Fisher, Yumi H. Ikuhara, Yasuyuki Fujiwara, Shunsuke Kobayashi, Hiroki Moriwake, Akihide Kuwabara, Keigo Hoshikawa, Keiichi Kohama, Hideki Iba, and Yuichi Ikuhara

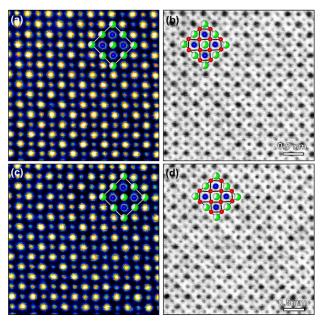

Fig. S1 Powder XRD patterns obtained from single-crystalline LNO and LLNO4 samples. Splitting of the (200) peaks shown in the insets indicates an orthorhombic crystal symmetry (space group C*mmm*) for both compounds. Calculation revealed their lattice parameters of LNO (a = 7.8129 Å, b = 7.8437 Å, c = 7.9364 Å) and LLNO4 (a = 7.7888 Å, b = 7.8252 Å, c = 7.9164 Å).

Fig. S2 Simulated (a) $[001]_p$ and (b) $[110]_p$ SAED patterns from the average crystal structure model of $La_{0.32}Li_{0.06}NbO_3$ ($x=0.06)^6$ which has the same crystal symmetry (orthorhombic) and a similar Li content compared to LLNO4 (x=0.04).

Fig. S3 SAED patterns taken from (a) LNO and (b) LLNO4 along their $[110]_p$ zone axes. (c) Intensity-scan profiles taken from the marked regions in (a) and (b) to reveal the positions of weak reflections, i.e. (π_1, π_2) of LNO and (π_1, π_2) are fixed to the following states of the first states of the

Fig. S4 $[001]_p$ zone-axis HAADF/ABF imaging. (a) HAADF and (b) ABF micrographs of LNO. (c) HAADF and (d) ABF micrographs of LLNO4. Overlaid structure models indicate the positions of O (red), Nb+O (blue) and La+vacancy (green) columns.