Metal and F Dual-doping to Synchronously Improve Electronic Transport

Rate and Lifetime for TiO₂ Photoanode to Enhance Dye-Sensitized Solar

Cells Performances

Yandong Duan,^{‡ab} Jiaxin Zheng,^{‡a} Ming Xu,^a Xiaohe Song,^a Nianqing Fu,^{bc} Yanyan Fang,^b Xiaowen Zhou,^b Yuan Lin^{*ab} and Feng Pan ^{*a}

^aSchool of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen 518055, China

^bBeijing National Laboratory for Molecular Sciences, Key Laboratory of Photochemistry,

Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China

^cDepartment of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China

† Electronic supplementary information (ESI) available. See DOI:

‡ Y. D. Duan and J. X. Zheng contributed equally to this work.

^{*} Corresponding author: <u>linyuan@iccas.ac.cn</u> Tel: 86-10-82615031 Fax: 86-10-82617315

^{*} Corresponding author: panfeng@pkusz.edu.cn Tel: 86-755-26033200

Fig. S1 Photocurrent-voltage characteristics of DSSCs based on the doped TiO_2 photoanodes under illumination AM1.5. ((C₄H₉O)₅Ta, (C₄H₉O)₅Nb, and (CH₃CO₂)₃Sb are tantalum butoxide, niobium butoxide, and antimony triacetate, respectively. The optimized molar ratios of Ta, Nb and Sb to Ti were 1:100. The molar ratio of F to Ti in TiO₂-F, TiO₂-Ta/F, TiO₂-Nb/F, and TiO₂-Sb/F samples was 0.75:100.

Fig. S2 The general transmission line model of DSSCs.

Fig. S3 Calculated total and partial density of states (DOS) for surfaces of anatase. (a) clean (101); (b) clean (001); (c) F terminated (101); (d) F terminated (001). The insets are the clean surface and F adsorbed surface models for anatase.

Dof	Doping	CD abit	Injection	Transport	Electron	Dye	11 (0/)a
	element	CD SIIII	efficiency	rate	Lifetime	loading	η (70)*
DSSCs based on doped-TiO ₂ photoanode							
1	W^{6+}			\uparrow	\downarrow		6.64/7.42
2	W^{6+}	positive		\downarrow	↑		3.37/4.2
3	W^{6+}			1	↑	↑	4.14/8.71
4	Zn^{2+}			1		↑	5.18/5.73
5	Mg^{2+}	positive	1	1		\rightarrow	6.35/7.12
6	Mg^{2+}	negative		1	\downarrow		
7	V^{5+}			1	\downarrow	\downarrow	6.01/6.81
8	Ce^{4+}/Ce^{3+}	positive	1			\rightarrow	6.4/7.12
9	Sb^{3+}	positive	1	\uparrow		\rightarrow	7.36/8.13
10	Ru ³⁺			1			4.3/5.2
11	Ag+			\downarrow	↑	\uparrow	4.74/6.13
12	Zn^{2+}	negative		\uparrow			6.7/7.6
13	Zn^{2+}				↑		0.58/4.63
14	Zn^{2+}	negative		\uparrow	\downarrow (1sun)		7.8/8.3
		negative		\uparrow	$\uparrow(0.1sun)$		6.2/7.6
15	Ta ⁵⁺				↑		4.8/6.7
16	Nb			\downarrow	↑		2.40/3.21
17	Nb		\uparrow	\uparrow	↑		6.8/8.0
18	Nb	positive	\uparrow	\uparrow			6.6/7.8
19	Nb			\uparrow	↑		
20	Nb ⁵⁺		\uparrow		↑	↑	7.4/8.1
21	Eu ³⁺	negative			↑		2.60/3.43
22	Cu ²⁺	negative			↑		5.8/8.1
23	Cr ³⁺	negative			↑		7.1/8.4
24	Zr^{4+}	negative					7.0/8.1
25	Ni	negative		↑	Ť	↑	5.2/6.75
26	Li ⁺				Ť		1.96/2.60
b	Sn ⁴⁺ /F ⁻	negative		↑	↑	\rightarrow	7.22/8.89
b	Ta ⁵⁺	positive		\uparrow	\downarrow	\rightarrow	7.22/8.3
b	Ta ⁵⁺ /F ⁻	positive		\uparrow	↑	\rightarrow	7.22/8.78
b	Nb ⁵⁺	positive		\uparrow	\downarrow	\rightarrow	7.22/8.4
b	Nb ⁵⁺ /F ⁻	positive		\uparrow	↑	\rightarrow	7.22/9.02
b	Sb^{3+}	positive	Ť	\uparrow	\downarrow	\rightarrow	7.22/8.36
b	Sb ³⁺ /F ⁻	Positive		\uparrow	↑	\rightarrow	7.22/8.87
b	F-			\downarrow	↑	\rightarrow	7.22/8.31
25	B^{3+}	positive	↑		↑		3.02/3.44
26	S^{6+}	positive	Ť	1			5.56/6.91
27	F-			1	↑	\rightarrow	5.62/6.31

Table S1Comparison of different doping element for $TiO_2/SnO_2/ZnO$ and photovoltaic performance of
the DSSCs based on these samples.

S4

28	I-				↑	↑	4.9/7.0		
29	Ν		↑		\downarrow		7.14/8.32		
30	Ν					↑	7/8		
31	Zr ⁴⁺ /N			1	1	1	9.6/12.62		
32	N/F-	positive	↑	1	↑		6.71/8.20		
DSSCs based on doped-SnO ₂ photoanode									
33	Sb ³⁺			1			2.8/3.5		
34	Mg^{2+}			1	↑	1	0.85/2.03		
35	Zn^{2+}	negative			↑	1	1.13/4.15		
36	Zn^{2+}			1			/3.00		
37	Ν	negative			↑	1	1.07/2.31		
			N 1 1	1	. I				
		DSSC	is based on	doped-ZnO p	notoanode				
38	Eu ³⁺	DSSC positive	$\frac{1}{1000}$ s based on	t doped-ZnO p	↓	^	4.5/5.7		
38 39	Eu ³⁺ Mg ²⁺	DSSC positive negative	t f	doped-ZnO p ↑ ↑	↓ ↑	1	4.5/5.7 1.97/4.11		
38 39 40	Eu^{3+} Mg^{2+} Al^{3+}	DSSC positive negative	↑ ↑	1 1 1	↓ ↑ ↑	¢	4.5/5.7 1.97/4.11 0.205/0.298		
38 39 40 41	Eu^{3+} Mg^{2+} Al^{3+} Sn^{4+}	DSSC positive negative	↑ ↑	1 1 1	↓ ↑ ↑	↑ ↑	4.5/5.7 1.97/4.11 0.205/0.298 1.49/1.82		
38 39 40 41 42	$Eu^{3+} \\ Mg^{2+} \\ Al^{3+} \\ Sn^{4+} \\ B^{3+} \\$	DSSC positive negative	<u>↑</u>	1 1 1 1	→ ↑ ↑ ↑	↑ ↑ ↑	4.5/5.7 1.97/4.11 0.205/0.298 1.49/1.82 4.1/7.2		
38 39 40 41 42 43	$Eu^{3+} \\ Mg^{2+} \\ Al^{3+} \\ Sn^{4+} \\ B^{3+} \\ N^{3-}$	DSSC positive negative	<u>rs based on</u> ↑ ↑	1 1 1 1	↓ ↑ ↑ ↑	↑ ↑ ↑	4.5/5.7 1.97/4.11 0.205/0.298 1.49/1.82 4.1/7.2 0.67/2.64		
38 39 40 41 42 43 44	Eu ³⁺ Mg ²⁺ Al ³⁺ Sn ⁴⁺ B ³⁺ N ³⁻ N ³⁻	DSSC positive negative	↑ ↑ ↑	1 ↑ ↑ ↑	↓ ↑ ↑ ↑	↑ ↑ ↑	4.5/5.7 1.97/4.11 0.205/0.298 1.49/1.82 4.1/7.2 0.67/2.64 2.2/5.0		
38 39 40 41 42 43 44 45	Eu ³⁺ Mg ²⁺ Al ³⁺ Sn ⁴⁺ B ³⁺ N ³⁻ N ³⁻ I ⁻	DSSC positive negative	<u>r</u> t ↑ ↑	1 1 1 1	↓ ↑ ↑ ↑ ↑	↑ ↑ ↑	4.5/5.7 1.97/4.11 0.205/0.298 1.49/1.82 4.1/7.2 0.67/2.64 2.2/5.0 2.3/4.5		

 $^a\mbox{Photon-to-electron}$ conversion efficiency of DSCs with pure TiO_2 and the doped $TiO_2.$

^bData in our work.

^c \uparrow , increase; \downarrow , decrease; \rightarrow , no change.

Table S2	Flat band potential	$(E_{\rm fb})$ and dor	or density (N_d) of	f TiO ₂ and the	e doped TiO	2 films

Samples	$E_{\rm fb}/V$ vs. SCE	$N_{\rm d} (\times 10^{19})/{\rm cm}^{-3}$
TiO ₂	-0.530	0.93
TiO ₂ -Sn	-0.577	1.18
TiO ₂ -F	-0.515	0.90
TiO ₂ -Sn/F	-0.575	1.17

Samplag	Doping sources	$j_{\rm sc}$ (mA cm ⁻	$V_{\rm oc}$	FF	η (%)	Dye loading
Samples		²)	(mV)			(×10 ⁻⁷ mol cm ⁻²)
	None	$14.82\!\pm\!0.11$	686 ± 7	$0.71 \!\pm\! 0.01$	$7.22{\pm}0.10$	1.14 ± 0.04
TiO ₂ -Ta	(C ₄ H ₉ O) ₅ Ta	$17.53\!\pm\!0.10$	$667{\pm}6$	$0.71 \!\pm\! 0.01$	$8.30{\pm}0.10$	1.14 ± 0.05
TiO_2 - Ta/F	(C ₄ H ₉ O) ₅ Ta+TiF ₄	$17.92\!\pm\!0.10$	$690{\pm}6$	$0.71 \!\pm\! 0.01$	$8.78 {\pm} \textbf{0.12}$	1.10±0.05
TiO ₂ -Nb	(C ₄ H ₉ O) ₅ Nb	17.71 ± 0.12	668 ± 7	$0.71\!\pm\!0.00$	$8.40{\pm}0.12$	1.13±0.05
TiO_2 -Nb/F	(C ₄ H ₉ O) ₅ Nb+TiF ₄	$18.28 {\pm} \textbf{0.12}$	$695{\pm7}$	$0.71\!\pm\!0.01$	$9.02{\pm}0.11$	1.16 ± 0.04
TiO ₂ -Sb	(CH ₃ CO ₂) ₃ Sb	$17.82\!\pm\!0.11$	$670 {\pm} 5$	$0.70{\pm}0.0{2}$	$8.36{\pm}0.11$	1.15 ± 0.03
TiO_2 -Sb/F	(C ₄ H ₉ O) ₅ Nb+TiF ₄	$18.05\!\pm\!0.14$	$702\!\pm\!7$	$0.70{\pm}0.0{2}$	$8.87{\pm}0.15$	1.12±0.04
TiO ₂ -F	TiF ₄	$16.67{\pm}0.11$	$702\!\pm\!5$	$0.71 \!\pm\! 0.01$	$8.31{\pm}0.11$	1.16 ± 0.04

Table S3 Photovoltaic characteristics of the DSSCs based on TiO_2 and the doped TiO_2 photoanodes.

References

- Z. Tong, T. Peng, W. Sun, W. Liu, S. Guo and X. Z. Zhao, J. Phys. Chem. C, 2014, 118, 16892-16895.
- X. Zhang, F. Liu, Q. L. Huang, G. Zhou and Z. S. Wang, J. Phys. Chem. C, 2007, 115, 12665-12671.
- 3. P. S. Archana, A. Gupta, M. M. Yusoff and R. Jose, *Phys. Chem. Chem. Phys.*, 2014, **16**, 7448-7454.
- 4. A. H. G. Niaki, A. M. Bakhshayesh and M. R. Mohammadi, Sol. Energy, 2014, 103, 210-222.
- 5. Q. Liu, *Electrochimi. Acta*, 2014, **129**, 459-462.
- C. N. Zhang, S. Chen, L. e. Mo, Y. Huang, H. Tian, L. Hu, Z. Huo, F. Kong, S. Dai and X. Pan, J. Phys. Chem. C, 2011, 16418-16424.
- H. Seo, Y. Wang, D. Ichida, G. Uchida, N. Itagaki, K. Koga, M. Shiratani, S. H. Nam and J. H. Boo, *Jpn. J. Appl. Phys.*, 2013, 52, 11NM02.
- J. Zhang, W. Q. Peng, Z. H. Chen, H. Chen and L. Y. Han, J. Phys. Chem. C, 2012, 116, 19182-19190.
- M. Wang, S. L. Bai, A. F. Chen, Y. D. Duan, Q. P. Liu, D. Q. Li and Y. Lin, *Electrochimica Acta*, 2012, 77, 54-59.
- 10. S. G. So, K. Lee and P. Schmuki, *Phys. Status Solidi-R*, 2012, 6, 169-171.
- 11. E. M. Jin, X. G. Zhao, J. Y. Park and H. B. Gu, *Nanoscale Res. Lett.*, 2012, 7, 97.
- 12. F. Z. Huang, Q. Li, G. J. Thorogood, Y. B. Cheng and R. A. Caruso, J. Mater. Chem., 2012, 22,

17128-17132.

- Y. Zhang, L. L. Wang, B. K. Liu, J. L. Zhai, H. M. Fan, D. J. Wang, Y. H. Lin and T. F. Xie, *Electrochimica Acta*, 2011, 56, 6517-6523.
- 14. K. P. Wang and H. Teng, *Phys. Chem. Chem. Phys.*, 2009, **11**, 9489-9496.
- R. Ghosh, Y. Hara, L. Aibabaei, K. Hanson, S. Rangan, R. Bartynski, T. J. Meyer and R. Lopez, ACS Appl. Mater. Inter., 2012, 4, 4566-4570.
- 16. M. Yang, D. Kim, H. Jha, K. Lee, J. Paul and P. Schmuki, *Chem. Commun.*, 2011, 47, 2032-2034.
- 17. T. Nikolay, L. Larina, O. Shevaleevskiy and B. T. Ahn, *Energy Environ. Sci.*, 2011, 4, 1480-1486.
- X. Lü, X. Mou, J. Wu, D. Zhang, L. Zhang, F. Huang, F. Xu and S. Huang, *Adv. Funct. Mater.*, 2010, 20, 509-515.
- 19. P. S. Archana, R. Jose, M. M. Yusoff and S. Ramakrishna, *Appl. Phys. Lett.*, 2011, 98.
- 20. A. K. Chandiran, F. d. r. Sauvage, M. Casas-Cabanas, P. Comte, S. M. Zakeeruddin and M. Graetzel, *J. Phys. Chem. C*, 2010, **114**, 15849-15856.
- 21. J. H. Huang, P. Y. Hung, S. F. Hu and R. S. Liu, J. Mater. Chem., 2010, 20, 6505-6511.
- T. R. C. K. Wijayarathna, G. M. L. P. Aponsu, Y. P. Y. P. Ariyasinghe, E. V. A. Premalal, G. K. R. Kumara and K. Tennakone, *Nanotechnology*, 2008, 19, -.
- 23. C. Kim, K. S. Kim, H. Y. Kim and Y. S. Han, J. Mater. Chem., 2008, 18, 5809-5814.
- 24. M. Dürr, S. Rosselli, A. Yasuda and G. Nelles, J. Phys. Chem. B, 2006, 110, 21899-21902.
- 25. A. Subramanian and H. W. Wang, Appl. Surf. Sci., 2012, 258, 6479-6484.
- Q. Sun, J. Zhang, P. Q. Wang, J. Zheng, X. N. Zhang, Y. Z. Cui, J. W. Feng and Y. J. Zhu, J. *Renew Sustain Ener.*, 2012, 4, 023104.
- L. Song, H. Bin Yang, X. Wang, S. Y. Khoo, C. C. Wong, X. W. Liu and C. M. Li, ACS Appl. Mater. Inter., 2012, 4, 3712-3717.
- Q. Q. Hou, Y. Z. Zheng, J. F. Chen, W. L. Zhou, J. Deng and X. Tao, *J. Mater. Chem.*, 2011, 21, 3877-3883.
- 29. W. Guo, Y. Shen, G. Boschloo, A. Hagfeldt and T. Ma, *Electrochim. Acta*, 2011, 56, 4611-4617.
- 30. T. Ma, M. Akiyama, E. Abe and I. Imai, *Nano lett.*, 2005, **5**, 2543-2547.
- J. Y. Park, K. H. Lee, B. S. Kim, C. S. Kim, S. E. Lee, K. Okuyama, H. D. Jang and T. O. Kim, *Rsc Adv.*, 2014, 4, 9946-9952.
- 32. J. Yu, Y. Yang, R. Fan, L. Li and X. Li, J. Phys. Chem. C, 2014, 118, 8795-8802.

- 33. J. P. Correa Baena and A. G. Agrios, J. Phys. Chem. C, 2014. 118, 17028-17035.
- 34. H. C. Pang, H. B. Yang, C. X. Guo and C. M. Li, ACS Appl. Mater. Inter., 2012, 4, 6261-6265.
- 35. Z. D. Li, Y. Zhou, T. Yu, J. G. Liu and Z. G. Zou, *Crystengcomm*, 2012, 14, 6462-6468.
- X. C. Dou, D. Sabba, N. Mathews, L. H. Wong, Y. M. Lam and S. Mhaisalkar, *Chem. Mater.*, 2011, 23, 3938-3945.
- 37. Z. D. Li, Y. Zhou, J. C. Song, T. Yu, J. G. Liu and Z. G. Zou, J. Mater. Chem. A, 2013, 1, 524-531.
- J. X. Zhao, X. H. Lu, Y. Z. Zheng, S. Q. Bi, X. Tao, J. F. Chen and W. Zhou, *Electrochem. Commun.*, 2013, 32, 14-17.
- C. J. Raj, K. Prabakar, S. N. Karthick, K. V. Hemalatha, M.-K. Son and H. J. Kim, *J. Phys. Chem. C*, 2013, **117**, 2600-2607.
- 40. R. B. Tao, T. Tomita, R. A. Wong and K. Waki, J. Power Sources, 2012, 214, 159-165.
- 41. S. Ameen, M. S. Akhtar, H. K. Seo, Y. S. Kim and H. S. Shin, Chem. Eng. J., 2012, 187, 351-356.
- 42. K. Mahmood and H. J. Sung, J. Mater. Chem. A, 2014, 2, 5408-5417.
- L. Y. Zhang, Y. L. Yang, R. Q. Fan, H. Y. Chen, R. K. Jia, Y. H. Wang, L. Q. Ma and Y. Z. Wang, Mater. Sci. Eng. B-Adv., 2012, 177, 956-961.
- 44. K. Mahmood, B. S. Swain, G. S. Han, B.-J. Kim and H. S. Jung, *ACS Appl. Mater. Inter.*, 2014, **6**, 10028-10043.
- Y. Z. Zheng, X. Tao, Q. A. Hou, D. T. Wang, W. L. Zhou and J. F. Chen, *Chem. Mater.*, 2011, 23, 3-5.
- 46. L. J. Luo, W. Tao, X. Y. Hu, T. Xiao, B. J. Heng, W. Huang, H. Wang, H. W. Han, Q. K. Jiang, J. B. Wang and Y. W. Tang, *J. Power Sources*, 2011, **196**, 10518-10525.