Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2015

## **Supplementary Information**

# Superior Electric Double Layer Capacitors Using Micro- and Mesoporous

### **Silicon Carbide Sphere**

By Myeongjin Kim, Ilgeun Oh and Jooheon Kim\*

\*Corresponding author: Prof. Jooheon Kim

School of Chemical Engineering & Materials Science,

Chung-Ang University, Seoul 156-756, Korea

E-mail: jooheonkim@cau.ac.kr

#### 1. Low-magnification FE-SEM image for MMPSiC



Figure S1. Low-magnification FE-SEM image of MMPSiC.

#### 2. XRD analysis for silicon nanoparticle



Figure S2. XRD pattern of silicon nanoparticle.

### 3. XPS analysis for MMPSiC



Figure S3(a). XPS Si 2p spectra of MMPSiC.



Figure S3(b). XPS C 1s spectra of MMPSiC.

**Table S1.** The Si 2p peak position and the relative atomic percentages of various functional groups inMMPSiC.

|        | Fitting of the Si 2p peak Binding energy [eV]<br>(relative atomic percentage [%]) |                   |                                 |                    |
|--------|-----------------------------------------------------------------------------------|-------------------|---------------------------------|--------------------|
|        | Si-C                                                                              | SiOC <sub>3</sub> | SiO <sub>2</sub> C <sub>2</sub> | SiO <sub>3</sub> C |
| MMPSiC | 99.51<br>(70.88)                                                                  | 100.42<br>(14.45) | 101.31<br>(8.45)                | 102.2<br>(6.22)    |

**Table S2.** The C 1s peak position and the relative atomic percentages of various functional groups inMMPSiC.

|        | Fitting of the C 1s peak Binding energy [eV]<br>(relative atomic percentage [%]) |                                 |                   |  |  |
|--------|----------------------------------------------------------------------------------|---------------------------------|-------------------|--|--|
|        | Si-C                                                                             | SiO <sub>x</sub> C <sub>y</sub> | C-C               |  |  |
| MMPSiC | 282.72<br>(60.87)                                                                | 283.68<br>(24.69)               | 284.61<br>(14.44) |  |  |

4. Electrochemical performance of MMPSiC electrode by three-electrode configuration in 1M

Na<sub>2</sub>SO<sub>4</sub> aqueous electrolyte.



Figure S4(a). CV curves of MMPSiC electrode measured as different scan rates of 5, 10, 20, 50 and

100 mV s<sup>-1</sup>.



**Figure S4(b).** Galvanostatic charge/discharge curves of MMPSiC electrode measured as different current densities of 1, 2, 3, 5 and 10 A g<sup>-1</sup>.

5. Electrochemical performance of two-electrode supercapacitors based on MMPSiC electrodes with 1M Na<sub>2</sub>SO<sub>4</sub> aqueous electrolyte.



Figure S5(a). CV curves of two-electrode supercapacitor measured as different scan rates of 5, 10,

20, 50 and 100 mV s<sup>-1</sup>.



**Figure S5(b).** Galvanostatic charge/discharge curves of two-electrode supercapacitor measured as different current densities of 1, 2, 3, 5 and 10 A g<sup>-1</sup>.



Figure S5(c). Specific capacitance of two-electrode supercapacitor at different scan rates.

6. Electrochemical performance of two-electrode supercapacitors based on MMPSiC electrodes with 3-ethyl-3-methylimidazolium bis(trifluorosulfonyl)imide, [EMIM][TFSI] ionic liquid electrolyte.



Figure S6(a). CV curves of two-electrode supercapacitor measured as different scan rates of 5, 10,

20, 50 and 100 mV s<sup>-1</sup>.



**Figure S6(b).** Galvanostatic charge/discharge curves of two-electrode supercapacitor measured as different current densities of 1, 2, 3, 5 and 10 A g<sup>-1</sup>.



Figure S6(c). Specific capacitance of two-electrode supercapacitor at different scan rates.



Figure S6(d). Cycling stability of two-electrode supercapacitor measured at a current density of 10 A

