Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2015

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A This journal is © The Royal Society of Chemistry 2014

## **Electronic Supplementary Material**

## Encapsulating sulfur into hybrid porous carbon/CNTs substrate as cathode for lithium-sulfur batteries

Ze Zhang, Hang-Kun Jing, Sheng Liu, Guo-Ran Li and Xue-Ping Gao\*

Institute of New Energy Material Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin Key Laboratory of Metal and Molecule Based Material Chemistry, Nankai University, Tianjin 300071, China. \*Corresponding author: xpgao@nankai.edu.cn.



**Fig. S1** (a)TG curves of the A-MCxy carbon substrate recorded under an argon atmosphere with the heating rate of 10  $^{\circ}$ C min<sup>-1</sup>; (b) FTIR spectra of the A-MCxy carbon substrates.

| Table S1 Weight loss of the as-prepare | d carbon substrates and | l the sulfur/carbon com | posites |
|----------------------------------------|-------------------------|-------------------------|---------|
|----------------------------------------|-------------------------|-------------------------|---------|

| sample               | A-MC12 | S/A-MC12 | A-MC11 | S/A- | A-MC21 | S/A-MC21 |
|----------------------|--------|----------|--------|------|--------|----------|
|                      |        |          |        | MC11 |        |          |
| weight loss/ wt<br>% | 2.6    | 80.5     | 10.5   | 81.7 | 5.0    | 80.2     |



**Fig. S2** SEM images: (a) the A-MC12 carbon substrate and (b) the S/A-MC12 composite; (c) the A-MC21 carbon substrate and (d) the S/A-MC21composite; (e) commercial carbon black. (The white scale bar is 100 nm.)



Fig. S3 Low and high-magnification TEM observations of the A-MC11 carbon substrate.



**Fig. S4.** Cycle performance of the as-prepared S/A-MCxy composites with the sulfur loading of  $1.2-1.5 \text{ mg cm}^{-2}$  at the current density of 160 mA g<sup>-1</sup> (composite).



**Fig. S5**. Cycle performance of the S/A-MC11 composite with a higher sulfur loading at the current density of 160 mA g<sup>-1</sup> (composite) after first two cycles at 80 mA g<sup>-1</sup> (composite).



Fig S6. The discharge curves of the S/A-MC11composite at different current densities.

| Cycle number      | $\operatorname{Ret}\left(\Omega\right)$ | $Zw\left( \Omega  ight)$ |
|-------------------|-----------------------------------------|--------------------------|
| Before            | 78 2                                    | 212.9                    |
| discharge         | 70.2                                    | 212.)                    |
| 1 <sup>st</sup>   | 26.4                                    | 35.63                    |
| 5 <sup>th</sup>   | 31.8                                    | 81.95                    |
| 20 <sup>th</sup>  | 40.2                                    | 140.2                    |
| 50 <sup>th</sup>  | 49.7                                    | 162.1                    |
| 100 <sup>th</sup> | 66.3                                    | 191.7                    |

**Table S2** The simulated data from EIS spectra of the cathode material at full charged state in the different cycles.