Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2015

Electronic Supplementary Information (ESI) for J. Mater Chem. A This journal is © The Royal Society of Chemistry 2014

Electronic Supplementary Information (ESI) for

MnOOH/Nitrogen-Doped Graphene Hybrid Nanowires Sandwiched by Annealing Graphene Oxide Sheets for Flexible All-Solid-State Supercapacitors

Shuhua Yang, Xuefeng Song*, Peng Zhang, Lian Gao*

State Key Laboratory for Metallic Matrix Composite Materials,

School of Materials Science and Engineering,

Shanghai Jiao Tong University, Shanghai, 200240, China.

E-mail address: liangao@mail.sic.ac.cn (L. Gao); songxfeng@sjtu.edu.cn (X. Song)

Tel: +86-12-52412718. *Fax:* +86-21-52413122

Part I: Calculations

Areal capacitance for the flexible freestanding MNGHNs/AGO sandwich film, and volumetric capacitance, energy density, and power density for the MNGHNs/AGO flexible all-solid-state SCs. Areal capacitance values of the flexible freestanding MNGHNs/AGO sandwich film were obtained by $C_a = I\Delta t/\Delta ES$, where Δt is the discharge time (seconds), *I* is the discharge current (A), ΔE is the operating potential window (V) during the discharge, and *S* is the working area of the electrodes (cm²).^[1]

The volumetric capacitances for the MNGHNs/AGO flexible all-solid-state SCs were calculated from the discharge curves by the following equations:^[2]

$$C_v = I \Delta t / V \Delta U$$

(1)

where C_v is the volumetric capacitance, I is the discharge current, Δt is the discharge time, ΔU is the potential window during the discharge process, and V (cm³) was the volume of the whole SCs device (including electrodes, separator and electrolyte).

The volumetric energy (E) and power density (P) of the whole all-solid-state SCs were calculated from the discharge curves using the following equations:^[3]

$$E=0.5C_{v}(\Delta U)^{2}/3600$$

(2) (3)

where E (mWh cm⁻³) is the energy density, Cv is the volumetric capacitance, ΔU was the SCs voltage window, P (W cm⁻³) is the power density, and Δt is the discharge time.

References

 $P = E/\Delta t$

[1] X. Xiao, X. Peng, H. Jin, T. Li, C. Zhang, B. Gao, B. Hu, K. Huo, J. Zhou, *Adv. Mater.* 2013, 25, 5091.

[2] X. Lu, M. H. Yu, T. Zhai, G. Wang, S. Xie, T. Lu, C. Liang, Y. X. Tong, Y. Li, *Nano Lett.* 2013, 13, 2628.

[3] R. Rakhi, W. Chen, D. Cha, H. Alshareef, Nano Lett. 2012, 12, 2559.

Part II: Charge Storage Mechanism

The principal charge storage mechanism involved in the charging and discharging process for MNGHNs/AGO all-solid-state supercapacitors could be assigned to a variation of the manganese valency from III to IV. Redox reactions occurring in the supercapacitor devices involve proton insertion between the positive and negative electrodes which can be represented as follows:^[1, 2] Positive electrode

Discharge:	$MnOOH \rightarrow MnO_2H_{1-\delta} + \delta H + + \delta e$	(6)
Charge:	$MnO_{2}H_{1-\delta} + \delta H + + \delta e \rightarrow MnOOH$	(7)
Negative ele	ectrode	
Discharge:	$MnO_2 + \delta H + + \delta e \rightarrow MnO_2H_{\delta}$	(8)
Charge:	$MnO_2H_{\delta} \rightarrow MnO_2 + \delta H + \delta e$	(9)

For MnOOH, it has an inherent redox capability for facile electron-transfer processes and is the main electroactive species for the charge storage/delivery in the redox transition of the corresponding oxide. ^[3, 4] Besides MnOOH, analogous results for NiOOH and CoOOH have been also reported by G. W. Yang and Y. X. Tong.^[5, 6]

References

[1] S. C. Pang, M. A. Anderson, T. W. Chapman, J. Electrochem. Soc. 2000, 147, 444.

[2] M. Toupin, T. Brousse, D. Bélanger, Chem. Mater. 2004, 16, 3184.

[3] H. T. Tan, X. Rui, W. Shi, C. Xu, H. Yu, H. E. Hoster, Q. Yan, *ChemPlusChem* 2013, 78, 554.

[4] L. Wang, D. L. Wang, *Electrochim. Acta* 2011, 56, 5010.

[5] H. Li, M. Yu, F. Wang, P. Liu, Y. Liang, J. Xiao, C. Wang, Y. Tong, G. Yang, *Nat. Commun.* 2013, 4, 1894.

[6] H. Li, M. Yu, X. Lu, P. Liu, Y. Liang, J. Xiao, Y. Tong, G. Yang, ACS Appl. Mater. Interfaces 2014, 6, 745.

Part III: Supplementary Figures

Fig. S1. SEM image of MNGHNs

Fig. S2. TGA curve of MNGHNs.

The experiments were performed from 30 to 850 °C in air flow at a heating rate of 10 °C/min. In the process, the NG sheets were burned up, whereas MnOOH turned into Mn_2O_3 . Accordingly, the mass ratio of MnOOH is 75.2 wt % in the MNGHNs.

Electronic Supplementary Information (ESI) for J. Mater Chem. A This journal is © The Royal Society of Chemistry 2014

Fig. S3. XPS survey spectra of MNGHNs.

Fig. S4. Narrow O 1s XPS spectra of the graphene.

Fig. S5. Digital images of (a) freestanding MNGHNs/AGO sandwich film, and (b) freestanding MNGHNs/RGO sandwich film. The MNGHNs in MNGHNs/AGO sandwich film (or MNGHNs/RGO sandwich film) was about 80% of the whole weight.

Fig. S6. (a) EIS of the flexible freestanding MNGHNs/AGO sandwich film. The inset shows the enlarged EIS at the high frequency region. (b) The electrical equivalent circuit used for fitting impedance spectra.

Electronic Supplementary Information (ESI) for J. Mater Chem. A This journal is © The Royal Society of Chemistry 2014

Fig. S7. (a, c) CV curves at a scan rate of 50 mV/s, and (b, d) CD curves at 2 mA/cm² in 1 M Na_2SO_4 aqueous electrolyte for MNGHNs/AGO, MNGHNs/RGO, GMWs/AGO, and MnOOH/AGO sandwich films (and pure AGO and MNGHNs electrode made by mixing the samples, acetylene black, and a polyvinylidene dilfluoride (PVDF) binder in a mass ratio of 70 : 20 : 10 in N-methyl pyrrolidone (NMP) solvent, and then pressing the mixture onto the nickel foam substrate (1 cm×1 cm)), respectively.

The electrochemical properties of the MNGHNs/RGO, GMWs/AGO, and MnOOH/AGO sandwich films obtained by replacing AGO with RGO or replacing MNGHNs with GMWs (or MnOOH) for comparison with the as-prepared MNGHNs/AGO sandwich film.

For comparison, all films contain the same mass loading (2 mg/cm^2) and active area $(1 \times 1.65 \text{ cm}^2)$. All the electrochemical performances of each electrode were measured under the same experimental conditions (three electrode cells, 1 M Na₂SO₄ aqueous solution as electrolyte).

Cyclic voltammetry (CV) measurements were performed at a scan rate of 50 mV/s, as shown in Fig. S6a. The relatively rectangular and symmetric CV curves of four sandwich films indicate the ideal capacitive nature of the fabricated electrodes. However, the MNGHNs/AGO sandwich film exhibits the highest specific capacity, basing on the integral area of CV. Moreover, galvanostatic charge-discharge (CD) measurements were carried out at a current density of 2 mA/cm². According to Fig. S6b, the specific capacitances of the four different electrodes are calculated to be 161.5, 70.3, 45.5, and 22.3 mF/cm², respectively. Obviously, the MNGHNs/AGO sandwich film shows the highest capacity among the four samples at the same current density, which is consistent with the CV results (Fig. S6a). In addition, the electrochemical properties of the

MNGHNs/AGO sandwich film also compared with those of pure AGO and MNGHNs electrode. The capacitive performance of pure AGO and MNGHNs electrode significantly smaller than that of MNGHNs/AGO sandwich film. The significantly improved capacitance of the MNGHNs/AGO sandwich film can be attributed to synergetic effect of the MNGHNs and AGO.

Fig. S8. Nitrogen adsorption and desorption isotherms of MNGHNs.

Fig. S9. EIS of MNGHNs/AGO all-solid-state SC under a curvature of 90°. The inset shows the enlarged EIS at the high frequency region.

Fig. S10. (a) The Ragone plot for MNGHNs/AGO all-solid-state SC device, compared with the results of typical literature reported previously.^[1-9] The plot was made based on the Fig. 4 in the study reported by Prof. P. Simon and co-workers.^[9] Compared with the other energy storage devices, the MNGHNs/AGO flexible all-solid-state SC exhibits excellent energy-power characteristics. (b) The magnified plot for various all-solid-state SCs in (a).

The Ragone plots include a 500- μ Ah thin-film lithium battery, a 25-mF supercapacitor, and a 220- μ F electrolytic capacitor, which are made based on the Fig. 4 in the study reported by Prof. P. Simon and co-workers (Fig. S9a),^[9] along with other all-solid-state SCs reported previously (Fig. S9b)^[1-8] for comparison with our results. The plots show the volumetric energy density and power density of various devices. The MNGHNs/AGO all-solid-state SC exhibits energy densities of up to 2.34 mWh/cm³. Additionally, the results are superior to most of the results reported by other groups for all-solid-state SC (Fig. S9b). It should be noted that Fig. S9 is used only to show the general range of our devices because different current densities and various calculations were used in the cited data.

References

[1] M. F. El-Kady, V. Strong, S. Dubin, R. B. Kaner, Science 2012, 335, 1326.

[2] M. Kaempgen, C. K. Chan, J. Ma, Y. Cui, G. Gruner, Nano Lett. 2009, 9, 1872.

[3] Y. Xu, Z. Lin, X. Huang, Y. Liu, Y. Huang, X. Duan, ACS Nano 2013, 7, 4042.

[4] X. Xiao, X. Peng, H. Jin, T. Li, C. Zhang, B. Gao, B. Hu, K. Huo, J. Zhou, *Adv. Mater.* **2013**, 25, 5091.

[5] Y. J. Kang, H. Chung, C. H. Han, W. Kim, Nanotechnology 2012, 23, 065401.

[6] Z. Weng, Y. Su, D. W. Wang, F. Li, J. Du, H. M. Cheng, Adv. Energy Mater. 2011, 1, 917.

[7] B. G. Choi, S. J. Chang, H. W. Kang, C. P. Park, H. J. Kim, W. H. Hong, S. Lee, Y. S. Huh, *Nanoscale* **2012**, 4, 4983.

[8] B. G. Choi, J. Hong, W. H. Hong, P. T. Hammond, H. Park, ACS Nano 2011, 5, 7205.

[9] D. Pech, M. Brunet, H. Durou, P. Huang, V. Mochalin, Y. Gogotsi, P. L. Taberna, P. Simon, *Nat. Nanotechnol.* **2010**, 5, 651.

Fig. S11. (a) Leakage current and (b) Self-discharge curves for MNGHNs/AGO all-solid-state SC.

For the leakage current test, the device was first charged to 0.8 V at 2 mA and then the potential was kept at 0.8 V for 2 h while acquiring the current data. For the self-discharge test, the device was first charged to 0.8 V at 2 mA and kept at 0.8 V for 15 min, and then the open potential of the device was recorded as a function of time.

Fig. S12. CD curves at 0.5 A/cm³ of (a) a single all-solid-state SC (black) and three all-solid-state SCs in series (red), and (b) a single all-solid-state SC (black) and three all-solid-state SCs in parallel (red).

Materials	Thickness (µm)	Mass loading (mg/cm ²)	Ref.
MoS ₂ /Graphene	10-20	4	1
graphene/MnO ₂ /CNTs	30	2.02	2
VN/CNT	48	4	3
CuO/Graphene	~10	N/A	4
Graphene/MnO ₂	~10	N/A	5
Activated carbon	50±5	3.2	6
Graphene Hydrogel	120	~2	7
3D graphene/MnO ₂	200-300	0.4	8
CNT/Si	4	0.5	9
V ₂ O ₅ /MWNCT	N/A	3-5	10
Ni(OH) ₂ /3D Graphite	37±3	0.2	11
Graphene-TiO ₂	2.6-9.3	1.03-1.26	12
Fe ₃ O ₄ /graphene	12.3	~1.7	13
SnO ₂ /SP-Li	5	0.5	14
MNGHNs/AGO	~16	2	This
			work

Table S1. Thickness and mass loading ever reported for free standing films for comparison with our results.

According to Table 1, the MNGHNs/AGO sandwich film achieves a high mass loading of 2 mg/cm² with a film thickness of ~16 μ m, which is much higher than that of carbon nanotubebased films and three-dimensional (3 D) architecture films, and comparable to two-dimensional (2 D) architecture films, such as MoS₂/Graphene film with a mass loading of 4 mg/cm² and a film thickness of 10-20 μ m, indicating that the as-fabricated film electrodes offer high mass loading.

References

- [1] L. David, R. Bhandavat and G. Singh, ACS Nano, 2014, 8, 1759.
- [2] Y. Cheng, S. Lu, H. Zhang, C. V. Varanasi and J. Liu, Nano Lett., 2012, 12, 4206.
- [3] X. Xiao, X. Peng, H. Jin, T. Li, C. Zhang, B. Gao, B. Hu, K. Huo and J. Zhou, Adv. Mater., 2013, 25, 5091.
- [4] Y. Liu, W. Wang, L. Gu, Y. Wang, Y. Ying, Y. Mao, L. Sun and X. Peng, ACS Appl. Mater. Interfaces, 2013, 5, 9850.
- [5] A. Yu, H. W. Park, A. Davies, D. C. Higgins, Z. Chen and X. Xiao, *The Journal of Physical Chemistry Letters*, 2011, **2**, 1855.
- [6] R. Hastak, P. Sivaraman, D. Potphode, K. Shashidhara and A. Samui, *Electrochim. Acta*, 2012, **59**, 296.
- [7] Y. Xu, Z. Lin, X. Huang, Y. Liu, Y. Huang and X. Duan, ACS Nano, 2013, 7, 4042.
- [8] Y. He, W. Chen, X. Li, Z. Zhang, J. Fu, C. Zhao and E. Xie, ACS Nano, 2012, 7, 174.
- [9] L.-F. Cui, L. Hu, J. W. Choi and Y. Cui, ACS Nano, 2010, 4, 3671.
- [10] K. H. Seng, J. Liu, Z. P. Guo, Z. X. Chen, D. Jia and H. K. Liu, *Electrochem. Commun.*, 2011, 13, 383.
- [11] J. Ji, L. L. Zhang, H. Ji, Y. Li, X. Zhao, X. Bai, X. Fan, F. Zhang and R. S. Ruoff, ACS Nano,

2013, 7, 6237.

- [12] T. Hu, X. Sun, H. Sun, M. Yu, F. Lu, C. Liu and J. Lian, Carbon, 2013, 51, 322.
- [13] R. Wang, C. Xu, J. Sun, L. Gao and C. Lin, J. Mater. Chem. A, 2013, 1, 1794.
- [14] K. C. Klavetter, J. L. Snider, J. P. de Souza, H. Tu, T. H. Cell, J. H. Cho, C. J. Ellison, A. Heller and C. B. Mullins, *J. Mater. Chem. A*, 2014, 2, 14459.

Table S2. Superior cycle stability ever reported for manganese oxide-based electrodes for comparison with our results.

Manganese oxide-based	Electrolyte	Ca	Cycle stability	Ref.
electrodes		(mF/cm ²)		
Graphene/MnO ₂ /	0.5 M	N/A	95% retention after 3000 cycles	1
Conducting polymer	Na_2SO_4			
Graphene/MnO ₂	1 M Na ₂ SO ₄	N/A	97.3% retention after 1000	2
//Activated carbon			cycles	
nanofibers				
GO/MnO ₂	1 M Na ₂ SO ₄	N/A	84.1% retention after 1000	3
			cycles	
Zn ₂ SnO ₄ /MnO ₂	1 M Na ₂ SO ₄	N/A	98.8% retention after 1000	4
Nanocable-Carbon			cycles	
Microfiber				
WO _{3-x} @Au@MnO ₂	0.1 M	N/A	110% retention after 5000	5
	Na_2SO_4		cycles	
Carbon nanoparticles	0.1 M	109	97.3% retention after 10,000	6
/MnO ₂ nanorods	Na_2SO_4		cycles	
Three-Dimensional	0.5 M	N/A	81.2% retention after 5000	7
Graphene/MnO ₂	Na_2SO_4		cycles	
Two-Dimensional	PVA/H ₃ PO ₄	N/A	92% retention after 7000 cycles	8
MnO ₂ /Graphene	gel			
MnO ₂ nanowires //	PVA/LiCl	150	84% retention after 5000 cycles	9
Fe ₂ O ₃ nanotubes	gel			
Bacterial-Cellulose-	1 M Na ₂ SO ₄	N/A	95.4% retention after 2000	10
Derived Carbon			cycles	
Nanofiber @ MnO ₂				
//N-Doped Carbon				
Nanofiber				
MnO ₂ Nanowire	1 M Na ₂ SO ₄	N/A	79% retention after 1000 cycles	11
/Graphene // Graphene				
H-TiO ₂ @MnO ₂ core-	PVA/LiCl	N/A	91.2% retention after 5000	12
shell NWs //H-TiO ₂	gel		cycles	
@C core-shell NWs				
Hierarchical	1 M LiClO ₄	181	85.2% retention after 1000	13
M(OH) ₂ /MnO ₂			cycles	
Nanofibril/Nanowires				
Highly Ordered MnO ₂	$1 \text{ M Na}_2 \text{SO}_4$	N/A	93% retention after 5000 cycles	14
Nanopillars				
Graphen/MnO ₂ -	0.5 M	N/A	~95% retention after 5000	15
Textile// CNT-Textile	Na ₂ SO ₄		cycles	
Au-doped MnO ₂ films	2 M Li ₂ SO ₄	N/A	107% retention after 15,000	16
			cycles	

Electronic Supplementary Information (ESI) for J. Mater Chem. A This journal is © The Royal Society of Chemistry 2014

Graphene/MnO ₂	1 M Na ₂ SO ₄	N/A	>100% retention after 1000	17
Nanospheres//			cycles	
Graphene/MoO ₃				
Nanosheets				
Nanoporous gold/MnO ₂	2 M Li ₂ SO ₄	N/A	~85% retention after 1000	18
			cycles	
Activated	0.1M	N/A	~87.5% retention after 195,000	19
carbon//MnO ₂	K ₂ SO ₄		cycles	
MnO ₂	0.1 M	N/A	100% retention after 1000	20
	Na ₂ SO ₄		cycles	
Nickel-manganese	1 M Na ₂ SO ₄	N/A	~88% retention after 10,000	21
oxide			cycles	
Cobalt-manganese	1 M Na ₂ SO ₄	N/A	~86% retention after 10,000	21
oxide			cycles	
MnO ₂ -CNT-sponge	1 M Na ₂ SO ₄	N/A	~96% retention after 100,000	22
			cycles	
MnO ₂ /carbon cloth	PVA/H ₃ PO ₄	2.3	>90% retention after 60,000	23
	gel		cycles	
Manganese	0.5 M	N/A	95% retention after 100,000	24
Oxide/Graphene	Na ₂ SO ₄		cycles	
Aerogel				
Carbon/MnO ₂	5 M LiNO ₃	N/A	95% retention after 15,000	25
			cycles	
AC//NaMnO ₂	0.5 M	N/A	97% retention after 10,000	26
	Na ₂ SO ₄		cycles	
			>80% retention after 100,000	
			cycles	
Carbon/LiMn ₂ O ₄	1 M Li ₂ SO ₄	N/A	95% retention after 20,000	27
			cycles	
MNGHNs/AGO	1 M Na ₂ SO ₄	173.2	96.1% retention after 5000	This
			cycles	work
			90.2% retention after 200,000	
			cycles	
MNGHNs/AGO	PVA/H ₃ PO ₄	161.0	99.7% retention after 5000	This
	gel		cycles	work
			91.5% retention after 200,000	
			cycles	

References

[1] G. Yu, L. Hu, N. Liu, H. Wang, M. Vosgueritchian, Y. Yang, Y. Cui, Z. Bao, *Nano Lett.* **2011**, 11, 4438.

- [2] Z. Fan, J. Yan, T. Wei, L. Zhi, G. Ning, T. Li, F. Wei, Adv. Funct. Mater. 2011, 21, 2366.
- [3] S. Chen, J. Zhu, X. Wu, Q. Han, X. Wang, ACS Nano 2010, 4, 2822.
- [4] L. Bao, J. Zang, X. Li, Nano Lett. 2011, 11, 1215.
- [5] X. Lu, T. Zhai, X. Zhang, Y. Shen, L. Yuan, B. Hu, L. Gong, J. Chen, Y. Gao, J. Zhou, Adv.

Mater. 2012, 24, 938.

[6] L. Yuan, X. H. Lu, X. Xiao, T. Zhai, J. Dai, F. Zhang, B. Hu, X. Wang, L. Gong, J. Chen, *ACS Nano* **2011**, 6, 656.

- [7] Y. He, W. Chen, X. Li, Z. Zhang, J. Fu, C. Zhao, E. Xie, ACS Nano 2012, 7, 174.
- [8] L. Peng, X. Peng, B. Liu, C. Wu, Y. Xie, G. Yu, Nano Lett. 2013, 13, 2151.
- [9] P. Yang, Y. Ding, Z. Lin, Z. Chen, Y. Li, P. Qiang, M. Ebrahimi, W. Mai, C. P. Wong, Z. L. Wang, *Nano Lett.* **2014**, 14, 731.
- [10] L. F. Chen, Z. H. Huang, H. W. Liang, Q. F. Guan, S. H. Yu, Adv. Mater. 2013, 25, 4746.
- [11] Z. S. Wu, W. Ren, D. W. Wang, F. Li, B. Liu, H. M. Cheng, ACS Nano 2010, 4, 5835.
- [12] X. Lu, M. Yu, G. Wang, T. Zhai, S. Xie, Y. Ling, Y. Tong, Y. Li, Adv. Mater. 2013, 25, 267.
- [13] J. Duay, S. A. Sherrill, Z. Gui, E. Gillette, S. B. Lee, ACS Nano 2013, 7, 1200.
- [14] Z. Yu, B. Duong, D. Abbitt, J. Thomas, Adv. Mater. 2013, 25, 3302.
- [15] G. Yu, L. Hu, M. Vosgueritchian, H. Wang, X. Xie, J. R. McDonough, X. Cui, Y. Cui, Z. Bao, *Nano Lett.* **2011**, 11, 2905.
- [16] J. Kang, A. Hirata, L. Kang, X. Zhang, Y. Hou, L. Chen, C. Li, T. Fujita, K. Akagi, M. Chen, *Angewandte Chemie* **2013**, 125, 1708.
- [17] J. Chang, M. Jin, F. Yao, T. H. Kim, V. T. Le, H. Yue, F. Gunes, B. Li, A. Ghosh, S. Xie, *Adv. Funct. Mater.* **2013**, 23, 5074.
- [18] X. Lang, A. Hirata, T. Fujita, M. Chen, Nat. Nanotechnol. 2011, 6, 232.
- [19] T. Brousse, P. L. Taberna, O. Crosnier, R. Dugas, P. Guillemet, Y. Scudeller, Y. Zhou, F. Favier, D. Bélanger and P. Simon, *J. Power Sources*, 2007, **173**, 633.
- [20] M. Toupin, T. Brousse and D. Bélanger, Chem. Mater., 2002, 14, 3946.
- [21] H. Kim and B. N. Popov, J. Electrochem. Soc., 2003, 150, D56.
- [22] W. Chen, R. Rakhi, L. Hu, X. Xie, Y. Cui and H. Alshareef, Nano Lett., 2011, 11, 5165.
- [23] L. Wu, R. Li, J. Guo, C. Zhou, W. Zhang, C. Wang, Y. Huang, Y. Li and J. Liu, *AIP Advances*, 2013, **3**, 082129.
- [24] C. C. Wang, H. C. Chen and S. Y. Lu, Chem.-Eur. J., 2014, 20, 517.
- [25] H. Mosqueda, O. Crosnier, L. Athouël, Y. Dandeville, Y. Scudeller, P. Guillemet, D. Schleich and T. Brousse, *Electrochim. Acta*, 2010, **55**, 7479.
- [26] Q. Qu, Y. Shi, S. Tian, Y. Chen, Y. Wu and R. Holze, J. Power Sources, 2009, 194, 1222.
- [27] Y. G. Wang and Y. Y. Xia, Electrochem. Commun., 2005, 7, 1138.

Table S3. Performance comparison of both carbon-based materials and non-carbon-based materials (including metal oxides, sulfides, nitrides etc.) for two-electrode supercapacitors (including symmetric SCs (SSCs) and asymmetric SCs (ASCs)), along with typical literature results for commercial supercapacitors, based on whole volume of the SCs stack—including two electrodes, electrolyte, a separator between two electrodes, and current collectors.

Electrode		Electrolyte	C _v	Energy	Ref.
Materials			(F/cm^3)	Density	
				(mWh/cm ³)	
Carbon-	Laser Scribing	PVA/H ₃ PO ₄ gel	~0.43	~0.06	1
based	Graphene-SSCs				
material	Laser Scribing	TEA-BF ₄ /	0.59	~0.74	1
S	Graphene-SSCs	CH ₃ CN			
	Laser Scribing	Ionic liquid	0.61	1.36	1
	Graphene-SSCs				
	PANASONIC	N/A	~0.68	~0.72	1
	2.75 V/44mF				
	Commercial AC-EC				
	Graphene Hydrogel-	PVA/H ₂ SO ₄ gel	31	1.92	2
	SSCs				
	Commercial Activated	Aqueous	80~110	5~8	3
	Carbon-SSCs	electrolyte			
	Commercial Activated	Organic electrolyte	60~120	N/A	3
	Carbon-SSCs				
	Activated carbon-SSCs	PEO/KOH	~3.7	0.33~0.44	4
	Hydrated Graphite	H ₂ O	3.1	0.43	5
	Oxide-SSCs				
	Onion-Like Carbon-	Et ₄ NBF ₄ /PC	1.3	~1.5	6
	SSCs				
	Activated Carbon-SSCs	Et ₄ NBF ₄ /PC	9.0	10	6
Non-	VN/CNT-SSCs	PVA/H ₃ PO ₄ gel	7.9	0.54	7
carbon-	VOx//VN-ASCs	PVA/LiCl gel	1.35	0.61	8
based	TiN on carbon fabric-	PVA/KOH gel	0.33	0.05	9
material	SSCs				
S	Carbon/MnO ₂ -SSCs	PVA/H ₃ PO ₄ gel	2.5	0.12	10
	ZnO@amorphous ZnO-	PVA/LiCl gel	0.325	0.04	11
	doped MnO ₂ -SSCs				
	TiO2@carbon fabrics-	PVA/H ₂ SO ₄ gel	0.125	0.011	12
	SSCs				
	H-TiO ₂ @MnO ₂ //H-	PVA/LiCl gel	0.71	0.3	13
	TiO ₂ @C-ASCs				
	$Co_9S_8//Co_3O_4@RuO_2$ -	PVA/KOH gel	4.82	1.21	14
	ASCs				

Electronic Supplementary Information (ESI) for J. Mater Chem. A This journal is © The Royal Society of Chemistry 2014

	ZnO@MnO ₂ //RGO-	PVA/LiCl gel	0.52	0.234	15
	ASCs				
Ourmate	MNGHNs/AGO-SSCs	PVA/H ₃ PO ₄ gel	26.3	2.34	This
rials					work

References

- [1] M. F. El-Kady, V. Strong, S. Dubin, R. B. Kaner, *Science* 2012, 335, 1326.
- [2] Y. Xu, Z. Lin, X. Huang, Y. Liu, Y. Huang, X. Duan, ACS Nano 2013, 7, 4042.
- [3] X. Yang, C. Cheng, Y. Wang, L. Qiu, D. Li, Science 2013, 341, 534.
- [4] A. Lewandowski, M. Zajder, E. Frąckowiak, F. Beguin, *Electrochim. Acta* 2001, 46, 2777.

[5] W. Gao, N. Singh, L. Song, Z. Liu, A. L. M. Reddy, L. Ci, R. Vajtai, Q. Zhang, B. Wei, P. M. Ajayan, *Nat. Nanotechnol.* **2011**, 6, 496.

[6] D. Pech, M. Brunet, H. Durou, P. Huang, V. Mochalin, Y. Gogotsi, P. L. Taberna, P. Simon, *Nat. Nanotechnol.* **2010**, 5, 651.

[7] X. Xiao, X. Peng, H. Jin, T. Li, C. Zhang, B. Gao, B. Hu, K. Huo, J. Zhou, Adv. Mater. 2013, 25, 5091.

[8] X. Lu, M. Yu, T. Zhai, G. Wang, S. Xie, T. Liu, C. Liang, Y. Tong, Y. Li, Nano Lett. 2013, 13, 2628.

[9] X. Lu, G. Wang, T. Zhai, M. Yu, S. Xie, Y. Ling, C. Liang, Y. Tong, Y. Li, *Nano Lett.* 2012, 12, 5376.

[10] X. Xiao, T. Li, P. Yang, Y. Gao, H. Jin, W. Ni, W. Zhan, X. Zhang, Y. Cao, J. Zhong, *ACS Nano* **2012**, 6, 9200.

[11] P. Yang, X. Xiao, Y. Li, Y. Ding, P. Qiang, X. Tan, W. Mai, Z. Lin, W. Wu, T. Li, *ACS Nano* **2013**, 7, 2617.

[12] H. Zheng, T. Zhai, M. Yu, S. Xie, C. Liang, W. Zhao, S. C. I. Wang, Z. Zhang, X. Lu, J. Mater. Chem. C 2013, 1, 225.

[13] X. Lu, M. Yu, G. Wang, T. Zhai, S. Xie, Y. Ling, Y. Tong, Y. Li, Adv. Mater. 2013, 25, 267.

[14] J. Xu, Q. Wang, X. Wang, Q. Xiang, B. Liang, D. Chen, G. Shen, ACS Nano 2013, 7, 5453.

[15] Z. Wang, Z. Zhu, J. Qiu, S. Yang, J. Mater. Chem. C 2014, 2, 1331.