Supporting Information

Interface-Assisted Ionothermal Synthesis, Phase Tuning, Surface Modification and Bioapplication of Ln³⁺-doped NaGdF₄ Nanocrystals

Qiang Ju, Paul S. Campbell, and Anja-Verena Mudring*

Anorganische Chemie I – Festkörperchemie und Materialien, Fakultät für Chemie und Biochemie,

Ruhr-Universität Bochum, D-44780 Bochum

* Corresponding author, Email: <u>anja.mudring@ruhr-uni-bochum.de</u>

Figure S1. The XRD patterns of NCs obtained from interface-assisted ionothermal method without the addition of PEI and database standard data for orthorhombic GdF₃ (JCPDS 49-1804).

Figure S2. The emission spectra of hexagonal (black) and cubic (red) NaGdF₄: Ce³⁺, Tb³⁺ NCs under the excitation of 255 nm with the same experimental setup. The hexagonal NaGdF₄ shows a higher emission intensity and a higher intensity ratio between ${}^{5}D_{0} \rightarrow {}^{7}F_{2}/{}^{5}D_{0} \rightarrow {}^{7}F_{1}$ than that of cubic NaGdF₄, indicating that the hexagonal NaGdF₄ is more suitable host for doping optically active Ln³⁺ ions.

Figure S3. FTIR spectra of polyacrylic acid (PAA) and octadecylamine modified polyacrylic acid (ODA-PAA). The band centered at 1655 cm⁻¹, which can be ascribed to amide band, indicates the successful linkage of ODA with PAA.

Figure S4. RT emission spectra (black solid) of the biotinylated NaGdF₄ NCs after bioconjugation with FITC–labeled avidin in phosphate buffered saline solution (pH=7.4) under excitation at 485 nm. The red dotted line is the control experiment measured for non-biotinylated pure NaGdF₄ NCs. The weak signal is attributed to non-specific binding of avidin to the NC surface. Because of neat NaGdF₄ NCs we employed, no Ln^{3+} emissions are expected to be observed in the visible spectral region.