Supporting Information

Ultrasmall Gadolinium Hydrated Carbonate Nanoparticle: An Advanced T1 MRI Contrast Agent with Large Longitudinal Relaxivity

Guohai Liang¹, Lili Cao¹, Hui Chen¹, Zhengyong Zhang¹, Song Zhang¹, Shaoning Yu¹, Xianrong Shen² and Jilie Kong^{1*} ¹Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, PR China ²Naval Medicine Institute, Shanghai 200433, PR China

E-mail: jlkong@fudan.edu.cn

Table of contents:

- 1. Fig. S1 Hydrodynamic diameter of GHC-1 in aqueous solution.
- 2. Fig. S2 GHC-1 in aqueous solution after 1 month.
- 3. Fig. S3 TEM image of gadolinium hydrated carbonate nanoparticles synthesized without and with different amounts of PAA added.
- 4. Fig. S4 Hydrodynamic sizes of gadolinium hydrated carbonate nanoparticles synthesized with different initial amount of PAA.
- 5. Fig. S5 XPS spectra for naked gadolinium hydrated carbonate nanoparticles.
- 6. Fig. S6 The r_2 and r_1 relaxivity curves of GHC-1 at 3.0 T field strength.
- 7. Fig. S7 The r_1 relaxivity of PAA-coated gadolinium hydrated carbonate nanoparticles synthesized in the presence of different amounts of PAA.
- 8. Figure S8 Influence of endogenous metal ions and small chelating ligands on the relaxivity of GHC-1.
- 9. The formation of gadolinium hydrated carbonate nanoparticles.
- 10. Calculation of tumbling time.

Fig. S1 Hydrodynamic diameter of GHC-1 in aqueous solution.

Fig. S2 GHC-1 in aqueous solution after 1 month. The gadolinium concentration in the solution was 1 mM. The image on the right was taken by MRI.

Fig. S3 TEM image of gadolinium hydrated carbonate nanoparticles synthesized (A) without PAA, (B) with 0.2g PAA, (C) and (D) with 0.1g PAA.

Fig. S4 Hydrodynamic sizes of gadolinium hydrated carbonate nanoparticles synthesized with different initial amount of PAA.

Fig. S5 XPS spectra for naked gadolinium hydrated carbonate nanoparticles: (a) Gd 4d, (b) C 1s, and (c) O 1s.

Fig. S6 The r_2 (solid) and r_1 (dashed) relaxivity curves of GHC-1 at 3.0 T field strength.

Fig. S7 The r_1 relaxivity of PAA-coated gadolinium hydrated carbonate nanoparticles synthesized in the presence of different amounts of PAA. r_1 was plotted as a function of m(PAA)/m(GdCl₃). The nanoparticles were synthesized using the same method except for the amount of PAA added.

Figure S8. Influence of endogenous metal ions and small chelating ligands on the relaxivity of GHC-1. GSH stands for L-glutathione. All metal ions and chelating ligands were tested with a 5-fold higher concentration than Gd.

The formation of gadolinium hydrated carbonate nanoparticles

The main reactions in the formation of gadolinium hydrated carbonate nanoparticles can be expressed as follows [Eqs. (1)-(5)]:

$2 \text{ HOCH}_2\text{CH}_2\text{OH} \rightarrow 2 \text{ CH}_3\text{CHO} + 2 \text{ H}_2\text{O}$	(1)
$CO(NH_2)_2 \rightarrow NH_3 + HNCO$	(2)
$CNO^{-} + 2H_2O \rightarrow NH_4^{+} + CO_3^{-2-}$	(3)
$NH_3 + H_2O \rightarrow NH_4^+ + OH^-$	(4)
$\mathrm{Gd}^{3+} + \mathrm{OH}^{-} + \mathrm{CO}_{3}^{2-} + 2\mathrm{H}_{2}\mathrm{O} \rightarrow \mathrm{Gd}(\mathrm{OH})\mathrm{CO}_{3} \cdot 2\mathrm{H}_{2}\mathrm{O}$	(5)

Calculation of tumbling time

Tumbling time of GHC-1 (τ_R) can be calculated using the following formula¹: $\tau_R = 4\pi\eta a^3/3k_BT$ Where η represents dynamic viscosity = 10^{-3} pa·s, $k_BT = 4.2 \times 10^{-21}$ J, a is the hydrodynamic radius of GHC-1, which is 8.45 nm, and T = 305 K.

1. N. J. J. Johnson, W. Oakden, G. J. Stanisz, R. S. Prosser and F. C. J. M. van Veggel, *Chem. Mater.*, 2011, **23**, 3714-3722.