### **Supporting Information**

# High Payload Gd(III) Encapsulated in Hollow Silica Nanospheres for High Resolution Magnetic Resonance Imaging

Wan-Ing Lin,<sup>†</sup> Chien-Yuan Lin,<sup>‡</sup> Yu-Shen Lin,<sup>†</sup> Si-Han Wu,<sup>†</sup> Yu-Ru Huang,<sup>†</sup> Yann Hung,<sup>†</sup> Chen Chang,<sup>‡</sup>

and Chung-Yuan  $Mou^{\dagger}*$ 

<sup>†</sup>Department of Chemistry, National Taiwan University, Taipei, Taiwan 10617, Center for Condensed Matter Sciences, <sup>‡</sup>National Taiwan University, Taipei, Taiwan 10617, and Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan 11529.

\*Address correspondence to <u>cymou@ntu.edu.tw</u>

#### Calculation on the number of Gd per Gd@SiO<sub>2</sub>-PEG<sub>500</sub>:

Using the following data, we calculated the number of Gd per particle:

- 1. Gd content in Gd@SiO<sub>2</sub>-PEG<sub>500</sub> is 11.4 wt%.
- 2. Density of amorphous silica (d1) is  $2.2 \text{ g/cm}^3$ .
- 3. Density of yolk (d2) is firstly assumed to be  $2.5 \text{ g/cm}^3$ .

4. The external ( $D_E$ ), interior ( $D_I$ ) and yolk ( $D_Y$ ) diameter of Gd@SiO<sub>2</sub>-PEG<sub>500</sub> are 80.7 nm, 53.1 nm and 36.4 nm, respectively.

#### Calculation:

## Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B This journal is © The Royal Society of Chemistry 2013



1. The weight per Gd@SiO<sub>2</sub>-PEG<sub>500</sub>:

$$4/3\pi (D_{E}/2)^{3} \times (d1) - 4/3\pi (D_{I}/2)^{3} \times (d1) + 4/3\pi (D_{Y}/2)^{3} \times (d2)$$

$$= 4.96 \times 10^{-16} (g)$$

- 2. The number of Gd@SiO<sub>2</sub>-PEG<sub>500</sub> per gram:
  - $1/4.96 \times 10^{-16} = 2.02 \times 10^{15}$
- 3. The number of Gd per gram of Gd@SiO<sub>2</sub>-PEG<sub>500</sub>:

 $1 \times 11.4\% \div 157.25 \times 6.02 \times 10^{23} = 4.36 \times 10^{20}$ 

4. The number of Gd per Gd@SiO<sub>2</sub>-PEG<sub>500</sub>:

 $4.36 \times 10^{20} \div 2.02 \times 10^{15} = 2.16 \times 10^{5}$ 

In addition, the number of Gd per Gd@SiO<sub>2</sub>-PEG<sub>500</sub> was also calculated from various densities of yolk (between 2 to 8 g/cm<sup>3</sup>) and the results are shown in the following figure. (The boundary of densities are assumed based on polymeric lanthanum citrate ( d=2.5 g/cm<sup>3</sup>, *Inorg. Chem.* 2004, *43*, 6965-6968) and Gd metal (7.9 g/cm<sup>3</sup>).



Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B This journal is O The Royal Society of Chemistry 2013



**Figure S1** FT-IR spectrum of (a) Gd@SiO<sub>2</sub>-PEG<sub>500</sub> (b) the removed material. The removed material was obtained by concentrating the supernatant collected from the reaction mixture of Gd@SiO<sub>2</sub> PEGylation after centrifugation. The peaks near 1590 and 1405 cm<sup>-1</sup> (indicated by stars) can be assigned to the anti-symmetric and symmetric carboxylate stretches (vas(COO<sup>-</sup>),vs(COO<sup>-</sup>)), respectively. The  $\Delta$  value (vas(COO<sup>-</sup>)–vs(COO<sup>-</sup>)) can be interpreted as Gd complex of carboxylate bridges. The peaks near 1085 and 798 cm<sup>-1</sup> (indicated by arrows) are the characteristic peaks of silicate. The small peak shoulder around 1100 cm<sup>-1</sup> is due to PEG. About 0.4 wt% Gd was removed during PEGylation of Gd@SiO<sub>2</sub> by ICP-MS measurement.

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B This journal is O The Royal Society of Chemistry 2013



Figure S2 Hydrodynamic size distribution of Gd@SiO<sub>2</sub>-PEG<sub>500</sub> suspended in (a) water (b) PBS.



**Figure S3** Histograms of particle size distributions of (a)  $Gd@SiO_2$ , (b)  $Gd@SiO_2$ -PEG<sub>500</sub>, and (c)  $Gd@SiO_2$ -PEG<sub>500</sub> suspended in PBS for 40 days. Data are from TEM micrographs. D<sub>o</sub> and D<sub>c</sub> represents overall diameter of nanoparticles and internal core diameter inside nanoparticles, respectively.



Figure S4 The effect of Gd@SiO<sub>2</sub>-PEG<sub>500</sub> on NIH3T3cell proliferation.

#### Cell proliferation assay

 $2 \times 10^4$  NIH3T3 cells per well were seeded in 96-well plates for proliferation assays. After incubation with different amounts of Gd@SiO<sub>2</sub>-PEG<sub>500</sub> suspension in culture medium for 4 h, cells were allowed to grow in regular growth medium for 24 h followed by incubation with WST-1 reagent (Clontech) for 4 h at 37 °C for proliferation assay. The dark blue formazan dye generated by the live cells was proportional to the number of live cells and the absorbance at 450 nm was measured using a microplate reader (Bio-Rad, model 680).