Supporting Information

Magnetic γ-Fe₂O₃@REVO₄ (RE=Sm, Dy, Ho) Affinity Microspheres for Selective Capture, Fast Separation and Easy Identification of Phosphopeptides

Zhi-Gang Wang, Gong Cheng, Yan-Lin Liu, Ji-Lin Zhang*, De-Hui Sun, and Jia-Zuan Ni

10

5

Fig. S1 SEM (a) and TEM (b) images of the Fe₃O₄ particles. Inset is the Selected Area Electron Diffraction (SAED) pattern.

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B This journal is O The Royal Society of Chemistry 2013

Fig. S2 EDS spectra (a), XRD patterns (b), and FTIR spectra (c) of the $Fe_3O_4@Sm(OH)CO_3$, γ -Fe₂O₃@Sm₂O₃CO₂ and γ -Fe₂O₃@SmVO₄ samples.

Fig. S3 EDS spectra (a), XRD patterns (b), and FTIR spectra (c) of the $Fe_3O_4@Dy(OH)CO_3$, γ - $Fe_2O_3@Ho_2O_3$ and γ - $Fe_2O_3@HoVO_4$ samples.

Fig. S4 SEM images : Column A: a) $Fe_3O_4@SmVO_4$, b) $Fe_3O_4@DyVO_4$, and c) $Fe_3O_4@HoVO_4$ microspheres synthesized using $Fe_3O_4@RE(OH)CO_3$ as precursors with stirring.

 $_{5}$ Column B: a) γ -Fe₂O₃@SmVO₄, b) γ -Fe₂O₃@DyVO₄, and c) γ -Fe₂O₃@HoVO₄ synthesized using the γ -Fe₂O₃@RE₂O₃ microspheres as precursors without stirring. Scale bars: 1 µm

Fig. S5 MALDI-TOF mass spectra of a) β -casein digest (1 × 10⁻⁷ M), b) a digest mixture of β -casein and BSA (1:25, molar ratio) and c) a diluted human serum sample treated without the γ -Fe₂O₃@REVO₄ affinity microspheres.

Fig. S6 MALDI-TOF mass spectra of a digest mixture of β -casein and BSA (1:25, molar ratio) treated with a) as-synthesized Fe₃O₄ and s b) TiO₂ nanoparticles, respectively.

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B This journal is O The Royal Society of Chemistry 2013

Fig. S7 MALDI-TOF mass spectra of the peptides from β -casein digest (1×10⁻⁷ M) treated with a) γ -Fe₂O₃@SmVO₄, b) γ -Fe₂O₃@DyVO₄, c) γ -Fe₂O₃@HoVO₄ microspheres respectively after these microspheres were recycled up to five times.

Fig. S8 MALDI-TOF mass spectra of the peptides from β -casein digest (1 × 10⁻⁷ M) treated with a) γ -Fe₂O₃@SmVO₄, b) γ -Fe₂O₃@DyVO₄, c) γ -Fe₂O₃@HoVO₄ microspheres respectively after these microspheres were recycled up to eight times.

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B This journal is The Royal Society of Chemistry 2013

5

Fig. S9 SEM images of a) γ -Fe₂O₃@SmVO₄ b) γ -Fe₂O₃@DyVO₄ c) γ -Fe₂O₃@HoVO₄ after eight cycles using β -casein (1×10⁻⁷) as analyte. Scale bar: 1 μ m

Fig. S10 MALDI-TOF mass spectra of the highly diluted β -casein digest (1×10⁻⁹) treated with a) γ -Fe₂O₃@SmVO₄, b) γ -Fe₂O₃@DyVO₄, respectively, and c) MALDI-TOF mass spectra of the highly diluted β -casein digest (2×10⁻⁹) treated with γ -Fe₂O₃@HoVO₄ is microspheres.

Table S1. The phosphopeptides and their label signals identified by MALDI-TOF MS from tryptic digest of β -casein.

AA	Peptide sequences	Observed	Theoretical	Phosphorylation site
		m/z	m/z	
33-48	FQ[pS]EEQQQTEDELQDK	2061.3	2061.8	1
33-52	FQ[pS]EEQQQTEDELQDKIHPF	2555.5	2556.0	1
1-25	RELEELNVPGEIVE[pS]L[pS][pS][pS]EESITR	3121.6	3122.2	4

⁵ Table S2. Detailed Information of the Observed Endogenous Phosphopeptides from Human serum

NO.	Peptide sequences	Observed	Theoretical	Phosphorylation site
		m/z	m/z	
1	D[pS]GEGDFLAEGGGVR	1545.8	1545.5	1
2	AD[pS]GEGDFLAEGGGVR	1616.9	1616.7	1