Supporting information

Mesoporous Gadolino-aluminosilicate Nanoparticles as Magnetic Resonance Imaging **Contrast Agents**

Nicholas M. K. Tse, ^{1,2} Danielle F. Kennedy, *¹ Nigel Kirby, ³ Bradford A. Moffat, ⁴ Tracey M. Hinton, ⁵ Benjamin W. Muir, ¹ Rachel A. Caruso ^{1,2} and Calum J. Drummond ¹

¹CSIRO Materials Science and Engineering, Bag 10, Clayton, VIC, 3169, Australia ²School of Chemistry, The University of Melbourne, Melbourne, VIC, 3010, Australia

³Australian Synchrotron, 800 Blackburn Rd, Clayton, VIC, 3168, Australia

⁴Department of Radiology, The University of Melbourne Parkville, VIC, 3050, Australia ⁵ CSIRO Livestock Industries, 5 Portarlington Road, East Geelong VIC, 3219, Australia.

S1. Characterization results for the various Gd-Al-SiO₂ samples.

Sample Name	Composition			SAXS		Ordered S	l Domain ize	MRI			
	Gd	Al	SiO ₂	Al/Gd	d- P6mm Lattice spacing Parameter		FWHM	Domain size ^e	r ₁	r ₂	r_2/r_1
	wt%	wt%	wt%	w/w	(nm)	(nm)	at (100)	(nm)	mM ⁻¹ s ⁻¹	mM ⁻¹ s ⁻¹	
CTB200	6.85	0	93.15	-	3.94	-	-	-	2.02	6.5	3.21
CTB250	5.93	0	94.07	-	4.49	-	-	-	3.83	7.37	1.92
CTB400	5.92	0	94.08	-	3.97	4.59	-	-	2.78	6.15	2.21
Omniscan	-	-	-	-	-	-	-	-	5.53	4.64	0.84
GdAl_150_01_05	0.67	0.10	99.23	7.0	3.33	3.85	0.013 ^ª	24.60	18.77	4.81	0.26
GdAl_150_01_10	0.54	0.18	99.28	3.0	3.29	3.79	0.018 ^b	17.28	38.98	12.6	0.32
GdAl_150_01_20	2.65	0.18	97.17	15.0	3.29	3.79	0.024 ^b	13.34	5.5	1.77	0.32
GdAl_150_05_05	2.65	0.31	97.04	8.5	3.36	3.88	0.024 ^b	12.68	13.04	2.72	0.21
GdAl_150_05_10	2.74	0.58	96.68	4.7	3.36	3.88	0.028 ^b	11.14	7.71	1.48	0.19
GdAl_150_05_20	7.16	0.35	92.49	20.8	3.41	3.93	0.024 ^b	12.62	3.38	0.8	0.24
GdAl_150_10_05	5.52	0.51	93.97	10.8	3.62	-	0.035 ^c	8.28	7.09	0.96	0.13
GdAl_150_10_10	6.64	1.33	92.03	5.0	3.53	-	0.023 ^b	12.32	4.72	0.75	0.16
GdAl_150_10_20	0.36	0.05	99.59	6.7	3.47	-	0.036 ^c	7.78	212.02	10.62	0.05
GdAl_250_01_05	0.66	0.09	99.24	7.0	3.48	4.02	0.008 ^a	36.67	20.32	5.25	0.26
GdAl_250_01_10	0.48	0.19	99.33	2.5	3.51	4.05	0.008 ^a	35.82	28.97	7.37	0.25
GdAl_250_01_20	2.74	0.18	97.08	15.5	3.48	4.02	0.009 ^a	32.42	4.73	1.57	0.33
GdAl_250_05_20	6.75	0.36	92.89	18.8	3.46	3.99	0.074 ^d	4.08	2.47	0.61	0.25
GdAl_250_10_05	5.47	0.58	93.95	9.4	3.62	-	0.073 ^d	3.99	5.65	0.69	0.12
GdAl_250_10_10	6.21	1.26	92.53	4.9	3.59	-	0.022 ^b	13.32	4.7	0.61	0.13
GdAl_250_10_20	0.63	0.07	99.3	8.8	3.48	-	0.083 ^d	3.45	143.11	4.48	0.03
GdAl_350_01_05	0.70	0.04	99.25	16.0	3.51	4.05	0.008 ^a	38.81	19.08	4.6	0.24
GdAl_350_01_10	0.74	0.08	99.18	9.0	3.51	4.05	0.009 ^ª	33.86	20.9	6.05	0.29
GdAl_350_01_20	0.75	0.19	99.06	4.0	3.48	4.02	0.008 ^a	36.62	24.2	7.82	0.32
GdAl_350_05_05	3.26	0.17	96.57	19.5	3.48	4.02	0.016 ^b	18.13	6.5	0.96	0.15
GdAl_350_05_10	2.98	0.35	96.67	8.5	3.46	3.99	0.019 ^b	16.06	8.61	1.49	0.17
GdAl_350_05_20	3.20	0.56	96.24	5.7	3.41	3.93	0.023 ^b	13.14	7.35	1.16	0.16
GdAl_350_10_05	6.13	0.37	93.5	16.8	3.48	-	0.070 ^d	4.18	4.95	0.69	0.14
GdAl_350_10_10	6.15	0.42	93.43	14.6	3.56	-	0.071 ^d	4.09	6.64	0.98	0.15

- ^a peak fitted to a Lorentzian curve function.
- ^b peak fitted to a Gaussian curve function.
- ^c peak fitted to a exponential Gaussian function.
- ^d peak fitted to a Pearson IV curve function with the variable parameter v = 30.
- ^e calculated using the Scherrer equation with K=0.93.^[1, 2]

S2: Phantom MRI images of the T₁ and T₂ contrast for the series of reported materials.

S3. Average particle size measured using DLS plotted against the FWHM of the first correlation peak for the various CTAB/TEOS = 0.350 silicate sample.

S4. Dynamic light scattering of *GdAl_150_01_20*.

S5. Ternary phase diagrams for various GdAl SiO_2 samples. The three ternary phase diagrams a), b) and c) are for samples with a CTAB/TEOS ratio of 0.150, 0.250 and 0.350, respectively.

S6. Longitudinal relaxivity verses a) Al^{3+} , b) Gd^{3+} and c) pore ordering for the various silicate samples.

S7. Screen capture of the experimental setup used in this work on the Chemspeed Accelerator[™] SLTII robotic synthesis platform.

S8 .	Reagent a	amounts f	for t	he	synthesis	of	Gd-Al-SiC)2
-------------	-----------	-----------	-------	----	-----------	----	-----------	----

		СТАВ	TEOS	EtOH	HCl ^a	Gd ^{3+ b}	Al ^{3+ c}	H ₂ O	Total	
Exp #	Sample name	mg	mL	mL	mL	mL	mL	mL	mL	
1	GdAI_150_01_05	71.4	0.285	0.787	0.238	0.024	0.006	0.446	1.786	
2	GdAl_150_01_10	71.4	0.285	0.787	0.238	0.024	0.012	0.440	1.786	
3	GdAI_150_01_20	71.4	0.285	0.787	0.238	0.024	0.024	0.428	1.786	
4	GdAI_150_05_05	71.4	0.285	0.787	0.238	0.119	0.030	0.327	1.786	
5	GdAI_150_05_10	71.4	0.285	0.787	0.238	0.119	0.060	0.298	1.786	
6	GdAI_150_05_20	71.4	0.285	0.787	0.238	0.119	0.119	0.238	1.786	
7	GdAI_150_10_05	71.4	0.285	0.787	0.238	0.238	0.060	0.179	1.786	
8	GdAI_150_10_10	71.4	0.285	0.787	0.238	0.238	0.119	0.119	1.786	
9	GdAI_150_10_20	71.4	0.285	0.787	0.238	0.238	0.238	0.000	1.786	
10	GdAI_250_01_05	118.3	0.285	0.787	0.238	0.024	0.006	0.446	1.786	
11	GdAl_250_01_10	118.3	0.285	0.787	0.238	0.024	0.012	0.440	1.786	
12	GdAl_250_01_20	118.3	0.285	0.787	0.238	0.024	0.024	0.428	1.786	
13	GdAI_250_05_20	118.3	0.285	0.787	0.238	0.119	0.119	0.238	1.786	
14	GdAI_250_10_05	118.3	0.285	0.787	0.238	0.238	0.060	0.179	1.786	
15	GdAl_250_10_10	118.3	0.285	0.787	0.238	0.238	0.119	0.119	1.786	
16	GdAI_250_10_20	118.3	0.285	0.787	0.238	0.238	0.238	0.000	1.786	
17	GdAI_350_01_05	166.6	0.285	0.787	0.238	0.024	0.006	0.446	1.786	
18	GdAl_350_01_10	166.6	0.285	0.787	0.238	0.024	0.012	0.440	1.786	
19	GdAl_350_01_20	166.6	0.285	0.787	0.238	0.024	0.024	0.428	1.786	
20	GdAI_350_05_05	166.6	0.285	0.787	0.238	0.119	0.030	0.327	1.786	
21	GdAI_350_05_10	166.6	0.285	0.787	0.238	0.119	0.060	0.298	1.786	
22	GdAI_350_05_20	166.6	0.285	0.787	0.238	0.119	0.119	0.238	1.786	
23	GdAI_350_10_05	166.6	0.285	0.787	0.238	0.238	0.060	0.179	1.786	
24	GdAI_350_10_10	166.6	0.285	0.787	0.238	0.238	0.119	0.119	1.786	
a: HCl wa b: Gd ³⁺ ac c: Al ³⁺ aqu	 a: HCI was diluted to a concentration of 2.25 M HCI. b: Gd³⁺ aqueous solution was made using GdCl₃.6H₂O to a concentration of 209 mM in MilliQ water. c: Al³⁺ aqueous solution was made using AlCl₃ to a concentration of 247 mM in MilliQ water. 									

S9: Cell viability results for a) A549 and b) CHO-WT cells incubated with a the selected *GdAl* samples at varying nanoparticle concentrations. Results are presented as a percentage of viable cells compared to the control sample.

Cell toxicity study

Cells:

Chinese Hamster Ovary cells constitutively expressing Green Fluorescent Protein (CHO-GFP) (kindly received from K. Wark; CSIRO CMSE Australia) were grown in MEMa modification (Sigma, USA), and human alveolar basal epithelial cells (A549; ATCC CCL-185) were grown in DMEM (Invitrogen, USA). Both base media were supplemented with

10% foetal bovine serum, 2 mM glutamine, 10 mM Hepes, 1.5 g/L sodium bicarbonate, 0.01% penicillin and 0.01% streptomycin. Cells were grown at 37 °C with 5% CO_2 .

Toxicity assay:

CHO-GFP and A549 cells were seeded at 1×10^4 cells per well in 96-well tissue culture plates and grown overnight at 37 °C with 5% CO₂.

The silicate materials were added to 3 wells in the 96 well culture plates for each sample and incubated at 37 °C and incubated for 72 h. Toxicity was measured using the Alamar Blue reagent (Invitrogen USA) according to manufacturer's instructions. Briefly, media was removed and replaced with 100 μ l of standard media containing 10% Alamar Blue reagent, cells were then incubated for 2 h at 37 °C with 5% CO₂. The assay was read on an EL808 Absorbance microplate reader (BIOTEK, USA) at 540 nm and 620 nm. Cell viability was determined by subtracting the 620 nm measurement from the 540 nm measurement. Obtained data was analysed in Microsoft Excel. Results are presented as a percentage of untreated cells and the presented data are representative of three separate experiments in triplicate.

References

- [1] U. Holzwarth, N. Gibson, Nat Nano 2011, 6, 534.
- [2] T. Landh, Journal of Physical Chemistry 1994, 98, 8453.