Supplementary Information for:

Novel trypsin-FITC@MOF bioreactor efficiently catalyzes protein digestion

Wan-Ling Liu¹[‡], Sheng-Han Lo¹[‡], Brenda Singco¹, Chun-Chuen Yang², Hsi-Ya Huang^{1*}, Chia-Her Lin^{1*} ¹Department of Chemistry, Chung Yuan Christian University, 200 Chung Pei Road, Chung-Li, 320, Taiwan ² Department of Physic, Chung Yuan Christian University, 200 Chung Pei Road, Chung-Li, 320, Taiwan

Table of ContentsPart I Synthesis and characterization of MOF- CYCU-4

1 Synthesis of CYCU-4

- 2. X-ray Powder Diffraction
- 3. Structural Modeling and Powder X-Ray Diffraction Analysis
- 4. Figure S1
- 5. Figure S2
- 6. Figure S3
- 7. Figure S4
- 8. Figure S5
- 9. Table S1
- 10. Table S2
- 11. Table S3

Part II Application of CYCU-4

- 1. Trypsin-FITC conjugation and immobilization onto MOFs
- 2. BSA denaturation process

- 3. BSA digestion via trypsin-FITC@MOFs
- 4. Conditions for nano-LC- MS^2
- 5. Determination of trypsin activity and loading capacity of trypsin-FITC@CYCU-4
- 6. Figure S6
- 7. Figure S7
- 8. Figure S8
- 9. Figure S9
- 10. Figure S10
- 11. Figure S11
- 12. Figure S12
- 13. Figure S13
- 14. Figure S14
- 15. Figure S15
- 16. Figure S16
- 17. Table S4
- 18. Table S5
- 19. Table S6
- 20. Table S7
- 21. Table S8

Part I Synthesis and characterization of CYCU-4

1. Synthesis of CYCU-4

A reaction mixture of H_2 SDC (0.097 g, 0.36 mmol), Al(NO₃)₃•9H₂O (0.176 g, 0.47 mmol), and N,N-diethylformamide (DEF) (10.0 ml) was stirred for 5 min at room temperature, forming a homogeneous solution. The solution was heated at 180 °C for 3 days. A pale-yellow powder was filtered off, washed with dimethylformamide (DMF), dried at 120 °C in an oven, and collected, yielding a product weighing 0.1947 g.

2. X-ray Powder Diffraction

Structural characterization was carried out with a Panalytical X'Pert Pro MPD diffractometer (Bragg-Brentano para-focusing geometry, reflection mode) with K-Alpha1 wavelength of 1.540598 Å and K-Alpha2 wavelength of 1.544426 Å operated at 40 kV and 30 mA in reflection geometry using flat plate samples. The measurements were performed from 2-50° 2 Theta with the step-scan mode with a step-width of 0.0021° and a sampling time of 65s per step.

3. Structural Modeling and Powder X-Ray Diffraction Analysis.

The theoretical model of CYCU-4 was carried out using the Materials Studio 5.5.¹ Initially, only the Al atoms were included using the fractional coordinates found in MIL-68(V). The unit cell was elongated accordingly by the experimental lattice constants. Finally, the atoms of the 4,4'-stilbenedicarboxylate linker without hydrogen atoms were inserted. The geometry optimizations converged to give a final plausible crystal structure by adjusting the bond lengths of aluminum to oxygen atoms (bond angles of O-Al-O). The calculated and measured powder X-ray diffraction patterns were in good agreement (Fig. S1). The export SHELX res file was further examined by

 $PLATON^{2}$ software by the Addsym command. This would produce a new suitable res file for further use on the structure analysis. The models were used as a starting point for the Rietveld refinement.

The structure was solved from the powder XRD pattern of the activated sample, heated at 150 °C, to prevent re-absorption of water. The lab powder X-ray diffraction was measured for further considerations. Extractions of the peak positions, pattern indexing and Rietveld refinements were carried out with the GSAS program.³ For CYCU-4, due to the highly broadened peaks displayed in the powder XRD, the *Imma* space group, as reported in MIL-53 and DUT-5, was chosen to solve the structure. The pattern could be successfully indexed as an orthorhombic system with a lattice constant of a=28.74, b=6.447, and c=19.04 Å. The final Rietveld plot corresponding to the crystal structure model and profile factors were display in Fig. S1. table S1 and table S2 list the crystallographic data and atomic coordinates.

Figure S1: Powder XRD patterns of: (a) as-synthesized CYCU-4, (b) desolvated CYCU-4; (c) desolvated CYCU-4 under different reaction method (conventional electric (CE), microwave (MW), reflux at 180°C and stir at room temperature (rt-stir).

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B This journal is C The Royal Society of Chemistry 2013

Figure S2. The plots of electron density from X-ray powder diffraction pattern of CYCU-4.

Figure S3. (a) MOF structure with the cornered-sharing 1D inorganic chain (b) pore sizes of CYCU-4.

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B This journal is © The Royal Society of Chemistry 2013

7.

Figure S4.Nitrogen adsorption and desorption isotherms (77 K) of CYCU-4 prepared by different reaction methods (solid circles,

adsorption; open circles, desorption).

Figure S5. The nitrogen adsorption and desorption isotherms (77 K) and pore size distributions (DFT) of (a) native CYCU-4, (b) CYCU-4 after immersion in water and washing with water and hot DMF, (c) CYCU-4 after immersion in FITC solution and (d) CYCU-4 after immersion in trypsin-FITC solution.

Al ³⁺ source	Solvent	Time (d)	Temp. (°C)	Additives	method	Product
$Al(NO_3)_3$	DEF	1d	180	-	CE^{a}	CYCU-4
$Al(NO_3)_3$	DEF	1d	180	-	reflux ^b	CYCU-4
$Al(NO_3)_3$	DEF	30min	180	-	MW^{c}	CYCU-4
$Al(NO_3)_3$	DEF	1d	25	-	stir ^d	Unknown
						"Al(III)+H ₂ SDC"

Table S1. Summary of synthesis conditions and products

^a conventional electric (CE)

^b reflux in 180 °C

^c microwave (MW)

^d stir in room temperature (rt-stir)

*DEF, N,N-Diethylformamide

	CYCU-4
Formula	Al ₄ O ₂₀ C ₆₄ H ₄₄
Formula weight	1240.2
Temperature (K)	298
Wavelength (Å)	1.54056
Pattern range (°, 2θ)	3-50
Space group	Imma (No. 74)
<i>a</i> (Å)	28.23(20)
<i>b</i> (Å)	6.488(13)
<i>c</i> (Å)	19.19(6)
$V(\text{\AA}^3)$	3515.3(44)
Ζ	8
χ^2	2.126
Rp	0.0119
Rwp	0.0165

Table S2. Results and relevant information for the Rietveld refinement of CYCU-4.

			1	1	1
	Х	У	Z	U_{iso}	Occupancy
A1	0.0000	0.0000	0.0000	0.1	1
01	0.0000	-0.2500	-0.0377	0.1	1
O2	-0.0490	-0.0826	0.0585	0.1	1
C1	-0.0701	-0.2500	0.0745	0.1	1
C2	-0.1148	-0.2500	0.1161	0.1	1
C3	-0.1349	-0.0694	0.1366	0.1	1
C4	-0.1740	-0.0694	0.1778	0.1	1
C5	-0.1939	-0.2500	0.1998	0.1	1
C6	-0.2381	-0.1767	0.2352	0.1	0.5

Table S3. Atomic coordinates and equivalent isotropic displacement parameters ($Å^3$).

Part II Application of CYCU-4

1. Trypsin-FITC conjugation and immobilization onto MOFs.

A solution containing 50 μ L of 6000 μ g mL⁻¹ TPCK- treated trypsin standard stock solution, 50 μ L 5mM FITC and 50 μ L sodium carbonate buffer (100 mM) was vortex-mixed gently. The homogenous mixture was placed in a beaker with room temperature water and then microwave-heated for 2 min (180 W, SAMPO domestic microwave oven model RE-1002SM). The trypsin-FITC was immobilized onto the native MOFs (1mg) by suspending in a 100 μ L trypsin-FITC solution, gently vortexed at RT for 30 min. The produced trypsin immobilized MOFs (trypsin-FITC@MOF) were washed three times with 100 μ L phosphate buffer prior to further digestion and submission to other tests.

2. BSA denaturation process

The denaturation process followed the procedure of Kinter, et. al.⁴ but with slight modification. A 10 mg of lyophilized BSA protein was resuspended in a 1mL aqueous solution composed of urea (6 M) and Tris buffer (100 mM). A 5 μ L of dithiothreitol (DTT) reducing reagent (200 mM) was added to a 100 μ L aliquot of the BSA solution (10 mg/mL) in a 1.5 mL plastic micro-centrifuge tube, and then vortex-mixed gently. The protein mixture was allowed to stand at RT for 1 h. A 20 μ L of the alkylating reagent, iodoacetamide (IAA, 200 mM), was added into the above solution with a gentle vortex, and then the alkylation process proceeded at RT in the dark for 1 h. To consume the unreacted IAA, another 20 μ L of DTT reducing agent was added to the resulting solution with gentle vortex mixing, and the reaction was allowed to stand at RT for 1 h. The resulting solution was mixed with 775 μ L of D.I. water in order to reduce the urea

concentration to ~ 0.6 M, at which the trypsin can retain its activity.

3. BSA digestion via trypsin-FITC@MOFs.

The denatured BSA solution (100 μ L) was added into the trypsin-FITC@MOF biocatalysts with gentle vortex- mixing, and then an ultrasonic-assisted digestion reaction was carried out for 2 min. The peptide solution was separated from the solid MOF biocatalysts by 5-min centrifugation. An acetic acid solution (1 μ L of 17.4 M) was added to stop the digestion reaction. The resulting acidified supernatant was desalted using ZIP-TIP-C18 following the manufacturer's procedure. The resulting peptide solution was diluted with ammonium acetate solution (50 mM, pH 8.75) containing 5% ACN prior to nano-LC-MS² analysis.

4. Conditions for nano-LC-MS²

A poly(stearyl methacrylate-divinyl benzene-vinylbenzyltrimethylammouium) (poly(SMA-DVB-VBTA)) monolithic separation column (70 cm length; 75 μ m I.D.) modified from the previous study of Hsu, et. al ⁵ was used as separation column for nano-LC-MS², which was equilibrated with 100% solvent A (A: 95% water, 5% ACN, 0.1% FA, v/v). BSA peptide digests were separated in a gradient mode (0-10 min, 100% A; 10-60 min, 100%-30% A; 60-65 min, 30%-0% A, with solvent B (B: 20% water, 80% ACN, 0.1% FA, v/v) at a flow rate of 250 nL/min). The 0.5 μ L sample was injected via an autosampler (Dionex) with a 1 μ L sample loop. Nano-LC-ESI-MS² was performed on a UltiMate 3000 Nano-LC system (Dionex, Amsterdam, The Netherlands) coupled to the amazon SL mass spectrometer (Bruker-Daltonik, Germany) equipped with a nanoelectrospray ionization source (Bruker). All devices were controlled using HyStar

3.2 (BrukerDaltonik). A spray voltage of -1.5 kV was employed and the temperature of the transfer capillary was set to 250°C. MS data were acquired over 85 min in a data-dependent MS^2 mode. The full-scan mode in the ion trap analyzer covered the range of m/z 100-2200 at an enhanced resolution mode followed by product ion scans of the 2 most intense signals in the full-scan mass spectrum. Dynamic exclusion, with a duration of 60 s, was used to detect less abundant ions. MS^2 collision energy was set to 27%, and the fragment ions were detected at the ion trap analyzer. Peptide fragment fingerprint MS^2 analyses for protein identification were performed with BioTools 3.1 (BrukerDaltonik) using the Mascot database. Protein identification based on nano-LC-ESI- MS^2 experiments was achieved by conversion of raw data to mgf-files, using the Data analysis 4.0 software (BrukerDaltonik). The mgf-files were used to search the SwissProt database with BioTools 3.1 (BrukerDaltonik). MS^2 data were also included in the Mascot search.

5. Determination of trypsin activity and loading capacity of trypsin-FITC@CYCU-4

The activities of immobilized trypsin were measured by the hydrolysis of N- α -benzoyl-*DL*-arginine (BAPNA) in 10mM sodium phosphate buffer (pH 7.9). The resulted hydrolysis product, *p*-nitroaniline, was monitored by measuring the increase in the absorbance at 405 nm with a UV–Vis spectrophotometer. Herein, 500 µL 1mM BAPNA in10mM sodium phosphate buffer (pH 7.9) was added to the trypsin-FITC@CYCU-4 suspension. After 15 min, the trypsin-FITC@CYCU-4 was separated by centrifugation and the absorbance of the supernatant was measured at 405nm with a UV–Vis spectrophotometer.

The loading capacity of CYCU-4 for trypsin-FITC was evaluated by fluorescence emission method and the activity test method by the

BAPNA hydrolysis, respectively. First, the difference in the fluorescence emission intensity of trypsin-FITC solution before and after immobilization into CYCU-4 was used to obtain the concentration of trypsin-FITC adsorbed on CYCU-4. After calibration of solution volume (500µL) and initial trypsin concentration (2000 µg/mL) used, the loading capacity of trypsin-FITC@CYCU-4 was about 55.2 µg trypsin /mg MOF. For the activity test method, the UV absorbance of the hydrolysis product (p-nitroaniline) obtained from trypsin-FITC@CYCU-4 and free trypsin (2000 ppm trypsin in-solution) were compared, and the ratio of both activity tests were used to obtain an approximate loading capacity of around 63.2 µg trypsin /mg MOF, which was close to the results from the fluorescence method.

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B This journal is © The Royal Society of Chemistry 2013

6

Figure S6 BSA digests from the trypsin-FITC@CYCU-4 bioreactor prepared with different vortex time to enhance trypsin-FITC

absorption into CYCU-4.

Figure S7. Conventional preparation procedures used to immobilize trypsin on solid supports ^[6-13].

Figure S8 SEM images of a) as synthesized MOF, b) dried MOF after sodium carbonate buffer soaking, c) FITC@MOF, d)

trypsin-FITC@ MOF biocatalysts. Top images (CYCU-4) and bottom images (MIL-101(Cr)).

Fig.S9(A) Powder XRD patterns of a) native CYCU-4; b) sodium carbonate buffer immersed CYCU-4; c) FITC@ CYCU-4; d)

trypsin-FITC@ CYCU-4, (B) a) native MIL-101(Cr); b) sodium carbonate buffer immersed MIL-101(Cr); c) FITC@ MIL-101(Cr); d) trypsin-FITC@MIL-101(Cr).

Figure S10. 3D CLSM images of Trypsin-FITC@ CYCU-4 biocatalyst constructed based on a hundred slices chosen from the bottom to

the top of about 83 um z-axis height. Linked to website at DOI: 10.1039/b000000x/

Figure S11. NanoLC-MS² chromatogram of BSA peptides digested by "Al(III) + H_2SDC " material (non-porous).

Figure S12. The nitrogen adsorption and desorption isotherms (77 K) and pore size distributions (DFT) of (a) native MIL-101, (b) MIL-101 after immersion in FITC solution and (c) MIL-101after immersion in trypsin-FITC solution.

Figure S13. Fluorescent images of the MOFs. a) MIL-101 (Cr). b) trypsin-FITC@ MIL-101 (Cr).

Figure S14 Confocal laser scanning micrographs of MOFs (a-e) trypsin-FITC@MIL-101(Cr). The slices chosen for (a)–(e) were about 83nm distance along z direction. For the CLSM, an excitation filter $\lambda ex = 450-480$ nm and long pass emission filter $\lambda em > 515$ nm were chosen.

(The relative activity= (the absorbance value of immobilized reactor / the highest absorbance value of immobilized reactor*100%).)

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B This journal is O The Royal Society of Chemistry 2013

16.

Figure S16 activity test of trypsin-FITC@CYCU-4 (■) and trypsin@CYCU-4 (●).

(The relative activity= (the absorbance value of immobilized reactor/ the highest absorbance value of immobilized reactor*100%)).

17.

Table S4 Literature survey of trypsin immobilized reactor for protein digestion

Materials	Time of surface modification	Time of trypsin immobilization	Sequence coverage/ matched peptides	Reference
Silica-coated	Amino-functionalized: 3h	Trypsin coating: 27h	BSA: 50%	[6]
magnetic nano particles			Ovalbumin: 80%	
(NPs)			Myoglobin: 80%	
			Carbonic anhydrase:80%	
			Lactoglobulin: 50%	
Magnetic Nanoparticles	Amino-functionalized: 6h	Trypsin covalently binding: 4 h	BSA: 38%	[7]
	Aldehyde-functionalized: 1.5 h		Myoglobin: 80%	
	Total :7.5 h		Cytochrome c: 76 %	
Mesoporous Silica (SBA-15)	N-(2-Aminoethyl)-3-aminopropyl-functionaliz	Trypsin adsorption: 10 mins	Myoglobin: 100%	[8]
	ed:18h			
Mesoporous silicate	Cyano-functionalized: 30 h	Trypsin adsorption: 16 h	Cytochrome c: 63 %	[9]
Polymer monolith	Aldehyde functionalization: 8h	Trypsin covalently binding: 30 h	BSA: 41%	[10]
Polymer monolith	Epoxy organic monoliths polymerization: few	Trypsin covalently binding: 26 h	Human serum albumin(HSA):78 %	[11]
	mins		Bovine ribonuclease B (RNaseB):80%	
			β-Casein:49.76%	
Polymer grafted magnetic	Graft copolymerization of methacrylic acid:	Trypsin covalently binding: 3 h	Cytochrome c: 28	[12]
beads	60h		HSA: 20	
Core/shell colloidal	Zeolite surface modification: 3 days	Trypsin adsorption: 1 h	BSA: 25%	[13]
magnetic zeolite			Myoglobin: 89%	
microspheres			Cytochrome c: 77 %	
MOFs	No necessity of modification	Trypsin adsorption: 30 mins	BSA: 72 %	[this work]

Table S5. Comparison of the proteolytic efficiency of various trypsin-FITC@MOF bioreactor and free trypsin-FITC digestion (for 18h

incubation)

Position	MS	Peptides sequence	F trypsi	ree in-FITC	MI. (A	L-53 Al)	DUT-4 (Al)		DUT-5 (Al) MIL-101 (Cr)		CYCU-4		-4	"Al(III) + H ₂ SDC" material			
																(non-po	orous).
		Incubation time	18h	US	τ	JS	U	S	υ	US		JS	18h	h US		U	S
				2 min	2 1	min	2 n	nin	2 r	2 min		min		2 min		n 2 min	
		Consecutive digestion	1 st	1 st	1 st	2 nd	1 st	2 nd	1 st	2 nd	1 st	2 nd	1 st	1^{st}	2 nd	1 st	2 nd
		Sequence coverage (%)	49	72	22	14	38	-	55	55 -		54	52	72	71	39	4
		Matched peptides	24	44	9	7	21	-	28	28 -		30	27	47	40	22	2
35-44	1248.625	R.FKDLGEEHFK.G												\checkmark			
45-65	2491.305	K.GLVLIAFSQYLQQCP		\checkmark										\checkmark			
		FDEHVK.L															
45-75	3635.918	K.GLVLIAFSQYLQQCP		\checkmark										\checkmark	\checkmark		
		FDEHVKLVNELTEFAK.															
		Т															
66-75	1162.645	K.LVNELTEFAK.T	\checkmark	\checkmark		\checkmark	\checkmark		\checkmark		\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	
66-88	2607.308	K.LVNELTEFAKTCVAD							\checkmark		\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	
		ESHAGCEK.S															
76-100	2863.358	K.TCVADESHAGCEKSL							\checkmark	\checkmark				$\sqrt{-\sqrt{-1}}$		\checkmark	
		HTLFGDELCK.V															
89-100	1418.725	K.SLHTLFGDELCK.V	\checkmark	\checkmark	\checkmark		\checkmark		\checkmark		\checkmark		\checkmark		\checkmark	\checkmark	
89-105	1944.848	K.SLHTLFGDELCKVAS					\checkmark				\checkmark			\checkmark	\checkmark	\checkmark	
		LR.E															
101-117	2003.805	K.VASLRETYGDMADC															

		CEK.Q											
106-117	1477.525	R.ETYGDMADCCEK.Q									\checkmark		
123-138	1900.928	R.NECFLSHKDDSPDLP						\checkmark			\checkmark	\checkmark	
		K.L											
139-151	1575.805	K.LKPDPNTLCDEFK.A		\checkmark			\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	
139-155	2019.045	K.LKPDPNTLCDEFKAD	\checkmark	\checkmark			\checkmark			\checkmark			
		EK.K											
161-167	926.683	K.YLYEIAR.R	\checkmark	\checkmark							\checkmark		
161-168	1082.645	K.YLYEIARR.H		\checkmark									
168-183	2044.058	R.RHPYFYAPELLYYAN			\checkmark						\checkmark		
		K.Y											
184-197	1746.765	K.YNGVFQECCQAEDK.							\checkmark		\checkmark	\checkmark	
		G											
184-204	2486.108	K.YNGVFQECCQAEDK	\checkmark	\checkmark			\checkmark		\checkmark	\checkmark		\checkmark	
		GACLLPK.I											
198-204	757.493	K.GACLLPK.I							\checkmark		\checkmark	\checkmark	
198-209	1387.505	K.GACLLPKIETMR.E							\checkmark				
223-232	1194.625	R.CASIQKFGER.A		\checkmark		\checkmark	\checkmark						\checkmark
233-241	1000.645	R.ALKAWSVAR.L		\checkmark	\checkmark	\checkmark							
236-241	688.393	K.AWSVAR.L											
246-256	1293.685	K.FPKAEFVEVTK.L							\checkmark		\checkmark		
249-256	921.523	K.AEFVEVTK.L		\checkmark							\checkmark	\checkmark	
249-263	1692.038	K.AEFVEVTKLVTDLTK.		\checkmark			\checkmark			\checkmark	\checkmark		\checkmark
		V											
257-263	788.503	K.LVTDLTK.V	\checkmark	\checkmark							\checkmark		

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B This journal is C The Royal Society of Chemistry 2013

257-266	1152.505	K.LVTDLTKVHK.E				\checkmark					
267–280	1748.705	K.ECCHGDLLECADDR.				\checkmark	\checkmark		\checkmark	\checkmark	
		А									
267-285	2246.945	K.ECCHGDLLECADDR	\checkmark	\checkmark		 \checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
		ADLAK.Y									
286-297	1441.965	K.YICDNQDTISSK.L	\checkmark	\checkmark	\checkmark	 \checkmark	\checkmark	\checkmark			
286-299	1683.128	K.YICDNQDTISSKLK.E			\checkmark				\checkmark	\checkmark	
298-309	1531.805	K.LKECCDKPLLEK.S	\checkmark	\checkmark	\checkmark			\checkmark		\checkmark	
319-340	2457.218	K.DAIPENLPPLTADFAE	\checkmark						\checkmark		
		DKDVCK.N									
341-359	2300.085	K.NYQEAKDAFLGSFLY		\checkmark		 \checkmark			\checkmark	\checkmark	
		EYSR.R									
347-359	1566.765	K.DAFLGSFLYEYSR.R	\checkmark	\checkmark		\checkmark			\checkmark	\checkmark	
360-371	1438.825	R.RHPEYAVSVLLR.L		\checkmark		 \checkmark				\checkmark	
361-371	1282.765	R.HPEYAVSVLLR.L		\checkmark					\checkmark		
372-386	1813.865	R.LAKEYEATLEECCAK		\checkmark					\checkmark		
		.D									
375-386	1501.645	K.EYEATLEECCAK.D					\checkmark			\checkmark	
375-399	3037.238	K.EYEATLEECCAKDDP				\checkmark			\checkmark		
		HACYSTVFDK.L									
387-399	1553.745	K.DDPHACYSTVFDK.L				\checkmark	\checkmark		\checkmark	\checkmark	
387-401	1794.865	K.DDPHACYSTVFDKL		\checkmark		 \checkmark	\checkmark			\checkmark	
		K.H									
402-412	1304.725	K.HLVDEPQNLIK.Q	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	
402-420	2354.171	K.HLVDEPQNLIKQNCD		\checkmark				\checkmark	\checkmark	\checkmark	

		QFEK.L											
413-433	2528.211	K.QNCDQFEKLGEYGF	\checkmark	\checkmark			\checkmark	\checkmark	\checkmark	 \checkmark	\checkmark	\checkmark	\checkmark
		QNALIVR.Y											
421-433	1478.845	K.LGEYGFQNALIVR.Y	\checkmark	\checkmark				\checkmark	\checkmark	 \checkmark	\checkmark	\checkmark	\checkmark
437-451	1638.968	R.KVPQVSTPTLVEVSR.	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	 \checkmark	\checkmark		\checkmark
		S											
438-451	1510.905	K.VPQVSTPTLVEVSR.S								\checkmark	\checkmark	\checkmark	\checkmark
460-482	2871.398	R.CCTKPESERMPCTED		\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
		YLSLILNR.L											
469-482	1723.868	R.MPCTEDYLSLILNR.L	\checkmark	\checkmark					\checkmark	\checkmark	\checkmark	\checkmark	
483-495	1538.845	R.LCVLHEKTPVSEK.V	\checkmark	\checkmark			\checkmark		\checkmark	 \checkmark	\checkmark		
499-507	1137.585	K.CCTESLVNR.R		\checkmark					\checkmark		\checkmark	\checkmark	
499-523	2999.348	K.CCTESLVNRRPCFSAL	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark
		TPDETYVPK.A											
508-523	1879.925	R.RPCFSALTPDETYVP	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	 \checkmark			\checkmark
		K.A											
508-528	2470.371	R.RPCFSALTPDETYVP		\checkmark			\checkmark		\checkmark		\checkmark	\checkmark	
		KAFDEK.L											
524–544	2497.238	K.AFDEKLFTFHADICT		\checkmark			\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	
		LPDTEK.Q											
529-544	1906.945	K.LFTFHADICTLPDTEK	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark				\checkmark
		.Q											
529-547	2276.251	K.LFTFHADICTLPDTEK		\checkmark					\checkmark		\checkmark	\checkmark	\checkmark
		QIK.K											
548-557	1141.765	K.KQTALVELLK.H	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark

 $\sqrt{}$

598-607	1000.665	K.LVVSTQTALA	\checkmark	\checkmark	\checkmark				\checkmark	\checkmark			 \checkmark
588-597	1106.585	K.EACFAVEGPK.L									\checkmark	\checkmark	
		GPK.L											
581-597	1926.818	K.CCAADDKEACFAVE		\checkmark		\checkmark	\checkmark		\checkmark		\checkmark		
569-580	1398.745	K.TVMENFVAFVDK.C	\checkmark							\checkmark	\checkmark	\checkmark	
		FVDK.C											
562-580	2198.228	K.ATEEQLKTVMENFVA		\checkmark				\checkmark			\checkmark	\checkmark	
549-561	1503.968	K.QTALVELLKHKPK.A											
549-557	1013.665	K.QTALVELLK.H		\checkmark	\checkmark		\checkmark			\checkmark			

Table S6 Proteolytic efficiency of trypsin-FITC@CYCU-4 and trypsin-FITC@MIL-101(Cr) bioreactors for consecutive digestion

Position	MS	Amino acid sequences		Trypsin-F	-FITC@CYCU-4 ^a			Trypsin-F	ITC@MIL	-101(Cr) ^b
		Consecutive digestion	1 st	2 nd	3 rd	4 th	5^{th}	1^{st}	2 nd	3 rd
		Sequence coverage (%)	72	71	65	70	63	56	54	_ ^c
		Matched peptides	47	39	38	40	37	37	30	-
35 - 44	1248.625	R.FKDLGEEHFK.G	\checkmark	\checkmark	\checkmark					
45 - 65	2491.305	K.GLVLIAFSQYLQQCPFDEHVK.L								
15 75	2625 018	K.GLVLIAFSQYLQQCPFDEHVKLVNEL	2	2						
45 - 75	5055.910	TEFAK.T	N	N	v					
66 – 75	1162.645	K.LVNELTEFAK.T		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
66 - 88	2607.308	K.LVNELTEFAKTCVADESHAGCEK.S		\checkmark	\checkmark	\checkmark		\checkmark		
76 - 88	1462.765	K.TCVADESHAGCEK.S				\checkmark	\checkmark	\checkmark	\checkmark	
76 100	1962 259	K.TCVADESHAGCEKSLHTLFGDELCK.	2	2		\checkmark	\checkmark	\checkmark	\checkmark	
70 - 100	2005.550	V	N	N	v					
89 - 100	1418.725	K.SLHTLFGDELCK.V		\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	
89 - 105	1945.148	K.SLHTLFGDELCKVASLR.E		\checkmark			\checkmark		\checkmark	
101 - 117	2003.805	K.VASLRETYGDMADCCEK.Q								
106 - 117	1477.525	R.ETYGDMADCCEK.Q						\checkmark		
123 - 138	1900.928	R.NECFLSHKDDSPDLPK.L		\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	
139 - 151	1575.805	K.LKPDPNTLCDEFK.A		\checkmark	\checkmark	\checkmark	\checkmark			
139 - 155	2019.045	K.LKPDPNTLCDEFKADEK.K								
161 - 167	926.683	K.YLYEIAR.R								
161 - 168	1082.645	K.YLYEIARR.H								
168 - 183	2044.058	R.RHPYFYAPELLYYANK.Y	\checkmark		\checkmark			\checkmark		
184 - 197	1746.765	K.YNGVFQECCQAEDK.G	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	

184 - 204	2486.108	K.YNGVFQECCQAEDKGACLLPK.I		\checkmark				\checkmark	
198 - 204	757.493	K.GACLLPK.I		\checkmark	\checkmark		\checkmark	\checkmark	\checkmark
198-209	1387.505	K.GACLLPKIETMR.E							
223 - 232	1194.625	R.CASIQKFGER.A			\checkmark	\checkmark	\checkmark		
233 - 241	1000.645	R.ALKAWSVAR.L					\checkmark		
236 - 241	688.393	K.AWSVAR.L						\checkmark	\checkmark
246 - 256	1293.685	K.FPKAEFVEVTK.L						\checkmark	
249 - 256	921.523	K.AEFVEVTK.L		\checkmark	\checkmark			\checkmark	
249 - 263	1692.038	K.AEFVEVTKLVTDLTK.V		\checkmark	\checkmark	\checkmark	\checkmark		
257 - 263	788.503	K.LVTDLTK.V				\checkmark		\checkmark	
267 - 280	1748.705	K.ECCHGDLLECADDR.A	\checkmark	\checkmark	\checkmark				\checkmark
267 - 285	2246.945	K.ECCHGDLLECADDRADLAK.Y	\checkmark	\checkmark	\checkmark				\checkmark
286 - 297	1441.965	K.YICDNQDTISSK.L							\checkmark
286 - 299	1683.128	K.YICDNQDTISSKLK.E		\checkmark	\checkmark	\checkmark	\checkmark		
298 - 309	1531.805	K.LKECCDKPLLEK.S		\checkmark		\checkmark	\checkmark		
319 - 340	2457.218	K.DAIPENLPPLTADFAEDKDVCK.N				\checkmark	\checkmark		\checkmark
341 - 359	2300.085	K.NYQEAKDAFLGSFLYEYSR.R		\checkmark	\checkmark			\checkmark	\checkmark
347 - 359	1566.765	K.DAFLGSFLYEYSR.R		\checkmark	\checkmark			\checkmark	
360 - 371	1438.825	R.RHPEYAVSVLLR.L		\checkmark			\checkmark	\checkmark	
361 - 371	1282.765	R.HPEYAVSVLLR.L			\checkmark	\checkmark	\checkmark		
372 - 386	1813.865	R.LAKEYEATLEECCAK.D				\checkmark			
375 - 386	1501.645	K.EYEATLEECCAK.D		\checkmark		\checkmark			\checkmark
275 200	2027 228	K.EYEATLEECCAKDDPHACYSTVFDK.	2						
515 - 577	3037.238	L	N						
387 - 399	1553.745	K.DDPHACYSTVFDK.L		\checkmark	\checkmark			\checkmark	\checkmark

 \checkmark

387 - 401	1794.865	K.DDPHACYSTVFDKLK.H		\checkmark	\checkmark			\checkmark	\checkmark	
402 - 412	1304.725	K.HLVDEPQNLIK.Q	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark		
402 - 420	2354.171	K.HLVDEPQNLIKQNCDQFEK.L	\checkmark	\checkmark	\checkmark	\checkmark				
413 - 433	2528.211	K.QNCDQFEKLGEYGFQNALIVR.Y	\checkmark							
421 - 433	1478.845	K.LGEYGFQNALIVR.Y	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
437 - 451	1638.968	R.KVPQVSTPTLVEVSR.S	\checkmark		\checkmark	\checkmark		\checkmark	\checkmark	
438 - 451	1510.905	K.VPQVSTPTLVEVSR.S	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			
460 - 482	2871.398	R.CCTKPESERMPCTEDYLSLILNR.L	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
469 - 482	1723.868	R.MPCTEDYLSLILNR.L	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
483 - 495	1538.845	R.LCVLHEKTPVSEK.V	\checkmark					\checkmark	\checkmark	
499 - 507	1137.585	K.CCTESLVNR.R	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	
/00 - 523	2000 3/18	K.CCTESLVNRRPCFSALTPDETYVPK.				\checkmark				
499 - 525	2777.340	A	v	v	v					
508 - 523	1879.925	R.RPCFSALTPDETYVPK.A				\checkmark	\checkmark	\checkmark	\checkmark	
508 - 528	2470.371	R.RPCFSALTPDETYVPKAFDEK.L	\checkmark							
524 - 544	2497.238	K.AFDEKLFTFHADICTLPDTEK.Q	\checkmark	\checkmark	\checkmark			\checkmark		
529 - 544	1906.945	K.LFTFHADICTLPDTEK.Q			\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
529 - 547	2276.251	K.LFTFHADICTLPDTEKQIK.K	\checkmark							
548 - 557	1141.765	K.KQTALVELLK.H	\checkmark	\checkmark	\checkmark	\checkmark				
549 - 557	1013.665	K.QTALVELLK.H				\checkmark	\checkmark			
549 - 561	1503.968	K.QTALVELLKHKPK.A				\checkmark	\checkmark			
562 - 580	2198.228	K.ATEEQLKTVMENFVAFVDK.C	\checkmark	\checkmark				\checkmark		
569 - 580	1398.745	K.TVMENFVAFVDK.C	\checkmark	\checkmark	\checkmark					
581 - 597	1926.818	K.CCAADDKEACFAVEGPK.L	\checkmark						\checkmark	
588 - 597	1106.585	K.EACFAVEGPK.L	\checkmark	\checkmark	\checkmark	\checkmark				

 $\sqrt{}$

 \checkmark

598 - 607 1000.665 K.LVVSTQTALA.-

^a 1st batch synthesized CYCU-4 used as trypsin-immobilized MOF reactor.

^b 1st batch synthesized MIL-101(Cr) used as trypsin-immobilized MOF reactor

^c No BSA digests were measured.

Table S7 Proteolytic efficiency of trypsin-FITC@CYCU-4 and trypsin-FITC@MIL-101(Cr) bioreactors prepared from different batches

Position	MS	Amino acid sequences	Trypsii	n-FITC@CY	CU-4	Trypsin-F	TTC@MIL	2-101(Cr)
		Batch	1	2	3	1	2	3
		Sequence coverage (%)	72	63	64	56	45	46
		Matched peptides	47	33	38	37	25	25
35 - 44	1248.625	R.FKDLGEEHFK.G						
45 - 65	2491.305	K.GLVLIAFSQYLQQCPFDEHVK.L	\checkmark	\checkmark				
45 - 75	3635.918	K.GLVLIAFSQYLQQCPFDEHVKLVNELTEFAK .T	\checkmark	\checkmark				
66 - 75	1162.645	K.LVNELTEFAK.T	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark
66 - 88	2607.308	K.LVNELTEFAKTCVADESHAGCEK.S	\checkmark		\checkmark	\checkmark		\checkmark
76 - 100	2863.358	K.TCVADESHAGCEKSLHTLFGDELCK.V	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
89 - 100	1418.725	K.SLHTLFGDELCK.V		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
89 - 105	1945.148	K.SLHTLFGDELCKVASLR.E	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
101 - 117	2003.805	K.VASLRETYGDMADCCEK.Q						
106 - 117	1477.525	R.ETYGDMADCCEK.Q	\checkmark		\checkmark			
123 - 138	1900.928	R.NECFLSHKDDSPDLPK.L	\checkmark	\checkmark	\checkmark			
139 - 151	1575.805	K.LKPDPNTLCDEFK.A	\checkmark		\checkmark			\checkmark
139 - 155	2019.045	K.LKPDPNTLCDEFKADEK.K			\checkmark		\checkmark	
161 - 167	926.683	K.YLYEIAR.R	\checkmark					
161 - 168	1082.645	K.YLYEIARR.H						
168 - 183	2044.058	R.RHPYFYAPELLYYANK.Y	\checkmark	\checkmark	\checkmark			
184 - 197	1746.765	K.YNGVFQECCQAEDK.G	\checkmark		\checkmark			\checkmark
184 - 204	2486.108	K.YNGVFQECCQAEDKGACLLPK.I			\checkmark		\checkmark	
198 - 204	757.493	K.GACLLPK.I	\checkmark			\checkmark		\checkmark

223 - 23	32 1194.625	R.CASIQKFGER.A				\checkmark	\checkmark	
233 - 24	41 1000.645	R.ALKAWSVAR.L					\checkmark	
236 - 24	41 688.393	K.AWSVAR.L		\checkmark	\checkmark			
246 - 23	56 1293.685	K.FPKAEFVEVTK.L	\checkmark					
249 - 23	56 921.523	K.AEFVEVTK.L	\checkmark			\checkmark		\checkmark
249 - 20	63 1692.038	K.AEFVEVTKLVTDLTK.V	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
257 - 20	63 788.503	K.LVTDLTK.V	\checkmark	\checkmark	\checkmark	\checkmark		
267 - 28	80 1748.705	K.ECCHGDLLECADDR.A	\checkmark		\checkmark			
267 - 28	85 2246.945	K.ECCHGDLLECADDRADLAK.Y	\checkmark	\checkmark	\checkmark	\checkmark		
286 - 29	97 1441.965	K.YICDNQDTISSK.L				\checkmark	\checkmark	
286 - 29	99 1683.128	K.YICDNQDTISSKLK.E	\checkmark	\checkmark		\checkmark		
298 - 30	09 1531.805	K.LKECCDKPLLEK.S		\checkmark	\checkmark	\checkmark	\checkmark	
319 - 34	40 2457.218	K.DAIPENLPPLTADFAEDKDVCK.N	\checkmark	\checkmark	\checkmark			
341 - 3	59 2300.085	K.NYQEAKDAFLGSFLYEYSR.R	\checkmark	\checkmark				
347 - 3	59 1566.765	K.DAFLGSFLYEYSR.R	\checkmark		\checkmark			
360 - 3′	71 1438.825	R.RHPEYAVSVLLR.L				\checkmark	\checkmark	
361 - 3′	71 1282.765	R.HPEYAVSVLLR.L	\checkmark	\checkmark		\checkmark		
372 - 38	86 1813.865	R.LAKEYEATLEECCAK.D	\checkmark	\checkmark		\checkmark		
375 - 38	86 1501.645	K.EYEATLEECCAK.D		\checkmark	\checkmark			
375 - 39	99 3037.238	K.EYEATLEECCAKDDPHACYSTVFDK.L	\checkmark	\checkmark	\checkmark			
387 - 39	99 1553.745	K.DDPHACYSTVFDK.L	\checkmark	\checkmark	\checkmark			
387 - 40	01 1794.865	K.DDPHACYSTVFDKLK.H		\checkmark		\checkmark		
402 - 4	12 1304.725	K.HLVDEPQNLIK.Q		\checkmark	\checkmark	\checkmark	\checkmark	
402 - 42	20 2354.171	K.HLVDEPQNLIKQNCDQFEK.L			\checkmark	\checkmark	\checkmark	
413 - 43	33 2528.211	K.QNCDQFEKLGEYGFQNALIVR.Y		\checkmark	\checkmark	\checkmark	\checkmark	

421 - 433	1478.845	K.LGEYGFQNALIVR.Y					\checkmark	\checkmark
437 - 451	1638.968	R.KVPQVSTPTLVEVSR.S		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
438 - 451	1510.905	K.VPQVSTPTLVEVSR.S			\checkmark			
460 - 482	2871.398	R.CCTKPESERMPCTEDYLSLILNR.L		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
469 - 482	1723.868	R.MPCTEDYLSLILNR.L		\checkmark	\checkmark			
483 - 495	1538.845	R.LCVLHEKTPVSEK.V				\checkmark		
499 - 507	1137.585	K.CCTESLVNR.R		\checkmark	\checkmark	\checkmark		
499 - 523	2999.348	K.CCTESLVNRRPCFSALTPDETYVPK.A		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
508 - 523	1879.925	R.RPCFSALTPDETYVPK.A				\checkmark	\checkmark	
508 - 528	2470.371	R.RPCFSALTPDETYVPKAFDEK.L		\checkmark	\checkmark			
524 - 544	2497.238	K.AFDEKLFTFHADICTLPDTEK.Q		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
529 - 544	1906.945	K.LFTFHADICTLPDTEK.Q				\checkmark	\checkmark	
529 - 547	2276.251	K.LFTFHADICTLPDTEKQIK.K				\checkmark	\checkmark	\checkmark
548 - 557	1141.765	K.KQTALVELLK.H		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
549 - 557	1013.665	K.QTALVELLK.H			\checkmark	\checkmark	\checkmark	\checkmark
549 - 561	1503.968	K.QTALVELLKHKPK.A			\checkmark			
562 - 580	2198.228	K.ATEEQLKTVMENFVAFVDK.C		\checkmark	\checkmark			
569 - 580	1398.745	K.TVMENFVAFVDK.C						
581 - 597	1926.818	K.CCAADDKEACFAVEGPK.L				\checkmark		
588 - 597	1106.585	K.EACFAVEGPK.L	\checkmark					
598 - 607	1000.665	K.LVVSTQTALA						

Table S8 Comparison of the proteolytic efficiency of trypsin-FITC@CYCU-4 bioreactors prepared with different FITC concentrations*

	Position	MS	Amino acid sequences	Trypsin-FITC@CYCU-4
--	----------	----	----------------------	---------------------

		FITC concentration (mM)	1	2.5	5	7.5	15
		Sequence coverage (%)	32	45	72	68	36
		Matched peptides	15	28	47	43	19
35 - 44	1248.625	R.FKDLGEEHFK.G					
45 - 65	2491.305	K.GLVLIAFSQYLQQCPFDEHVK.L			\checkmark		
45 - 75	3635.918	K.GLVLIAFSQYLQQCPFDEHVKLVNELTEFAK.T			\checkmark		
66 - 75	1162.645	K.LVNELTEFAK.T	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
66 - 88	2607.308	K.LVNELTEFAKTCVADESHAGCEK.S			\checkmark	\checkmark	
76 - 100	2863.358	K.TCVADESHAGCEKSLHTLFGDELCK.V			\checkmark	\checkmark	
89 - 100	1418.725	K.SLHTLFGDELCK.V		\checkmark		\checkmark	\checkmark
89 - 105	1945.148	K.SLHTLFGDELCKVASLR.E	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
101 - 117	2003.805	K.VASLRETYGDMADCCEK.Q		\checkmark		\checkmark	
106 - 117	1477.525	R.ETYGDMADCCEK.Q			\checkmark	\checkmark	
123 - 138	1900.928	R.NECFLSHKDDSPDLPK.L			\checkmark		
139 - 151	1575.805	K.LKPDPNTLCDEFK.A			\checkmark	\checkmark	
139 - 155	2019.045	K.LKPDPNTLCDEFKADEK.K				\checkmark	
161 - 167	926.683	K.YLYEIAR.R			\checkmark		
161 - 168	1082.645	K.YLYEIARR.H				\checkmark	
168 - 183	2044.058	R.RHPYFYAPELLYYANK.Y			\checkmark		
184 - 197	1746.765	K.YNGVFQECCQAEDK.G			\checkmark		
184 - 204	2486.108	K.YNGVFQECCQAEDKGACLLPK.I				\checkmark	
198 - 204	757.493	K.GACLLPK.I			\checkmark	\checkmark	\checkmark
223 - 232	1194.625	R.CASIQKFGER.A					\checkmark
233 - 241	1000.645	R.ALKAWSVAR.L					
236 - 241	688.393	K.AWSVAR.L					

246 - 256	1293.685	K.FPKAEFVEVTK.L			\checkmark		
249 - 256	921.523	K.AEFVEVTK.L	\checkmark		\checkmark	\checkmark	
249 - 263	1692.038	K.AEFVEVTKLVTDLTK.V			\checkmark	\checkmark	
257 - 263	788.503	K.LVTDLTK.V			\checkmark		
267 - 280	1748.705	K.ECCHGDLLECADDR.A			\checkmark	\checkmark	
267 - 285	2246.945	K.ECCHGDLLECADDRADLAK.Y	\checkmark		\checkmark	\checkmark	\checkmark
286 - 297	1441.965	K.YICDNQDTISSK.L				\checkmark	
286 - 299	1683.128	K.YICDNQDTISSKLK.E			\checkmark	\checkmark	\checkmark
298 - 309	1531.805	K.LKECCDKPLLEK.S					
319 - 340	2457.218	K.DAIPENLPPLTADFAEDKDVCK.N			\checkmark	\checkmark	
341 - 359	2300.085	K.NYQEAKDAFLGSFLYEYSR.R	\checkmark		\checkmark	\checkmark	
347 - 359	1566.765	K.DAFLGSFLYEYSR.R			\checkmark	\checkmark	
360 - 371	1438.825	R.RHPEYAVSVLLR.L				\checkmark	
361 - 371	1282.765	R.HPEYAVSVLLR.L			\checkmark	\checkmark	
372 - 386	1813.865	R.LAKEYEATLEECCAK.D			\checkmark		
375 - 386	1501.645	K.EYEATLEECCAK.D				\checkmark	
375 - 399	3037.238	K.EYEATLEECCAKDDPHACYSTVFDK.L			\checkmark		
387 - 399	1553.745	K.DDPHACYSTVFDK.L			\checkmark	\checkmark	\checkmark
387 - 401	1794.865	K.DDPHACYSTVFDKLK.H	\checkmark			\checkmark	
402 - 412	1304.725	K.HLVDEPQNLIK.Q	\checkmark		\checkmark	\checkmark	\checkmark
402 - 420	2354.171	K.HLVDEPQNLIKQNCDQFEK.L	\checkmark		\checkmark	\checkmark	\checkmark
413 - 433	2528.211	K.QNCDQFEKLGEYGFQNALIVR.Y	\checkmark		\checkmark	\checkmark	
421 - 433	1478.845	K.LGEYGFQNALIVR.Y			\checkmark		
437 - 451	1638.968	R.KVPQVSTPTLVEVSR.S	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
438 - 451	1510.905	K.VPQVSTPTLVEVSR.S			\checkmark		

460 - 482	2871.398	R.CCTKPESERMPCTEDYLSLILNR.L			\checkmark	\checkmark	
469 - 482	1723.868	R.MPCTEDYLSLILNR.L			\checkmark	\checkmark	
483 - 495	1538.845	R.LCVLHEKTPVSEK.V		\checkmark	\checkmark	\checkmark	
499 - 507	1137.585	K.CCTESLVNR.R		\checkmark	\checkmark	\checkmark	
499 - 523	2999.348	K.CCTESLVNRRPCFSALTPDETYVPK.A		\checkmark	\checkmark		
508 - 523	1879.925	R.RPCFSALTPDETYVPK.A		\checkmark		\checkmark	
508 - 528	2470.371	R.RPCFSALTPDETYVPKAFDEK.L		\checkmark	\checkmark	\checkmark	\checkmark
524 - 544	2497.238	K.AFDEKLFTFHADICTLPDTEK.Q		\checkmark	\checkmark	\checkmark	
529 - 544	1906.945	K.LFTFHADICTLPDTEK.Q		\checkmark		\checkmark	
529 - 547	2276.251	K.LFTFHADICTLPDTEKQIK.K		\checkmark	\checkmark	\checkmark	
548 - 557	1141.765	K.KQTALVELLK.H			\checkmark		
549 - 557	1013.665	K.QTALVELLK.H					
549 - 561	1503.968	K.QTALVELLKHKPK.A	\checkmark	\checkmark		\checkmark	
562 - 580	2198.228	K.ATEEQLKTVMENFVAFVDK.C			\checkmark	\checkmark	
569 - 580	1398.745	K.TVMENFVAFVDK.C			\checkmark		
581 - 597	1926.818	K.CCAADDKEACFAVEGPK.L	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
588 - 597	1106.585	K.EACFAVEGPK.L			\checkmark		
598 - 607	1000.665	K.LVVSTQTALA					

* Various FITC concentrations ranging from 1 to 15 mM was add to react with trypsin protein at 2000 μ g mL⁻¹.

References

1. Accelrys, Accelrys Software, Inc., San Diego, 2008

2. A.L. Spek, PLATON; The University of Utrecht: Utrecht, The Netherlands, 1999.

3. Larson AC. Von Dreele RB. Los Alamos National Laboratory, USA, 1994.

- 4. M. Kinter, NE. Sherman Protein Sequencing and Identification Using Tandem Mass Spectrometry. Copyright © 200 Wiley-Interscience, Inc ISBN 0-471-32249-0
- 5. C-H. Hsu, Y-J. Cheng, B. Singco, H-Y. Huang, Journal of Chromatography A 2011, 1218, 350.
- 6. B. Lee, D.L.Ferrer, B.C. Kim, H.B. Na, Y.I. Park, K.K.Weitz, M.G. Warner, T. Hyeon, S-W. Lee, R.D. Smithand, J. Kim, *Proteomics* 2011, **11**, 309.
- 7. S. Lin, D. Yun, D. Qi, C. Deng, Y. Li, X. Zhang Journal of Proteome Research 2008, 7, 1297.
- 8. F.Casadonte, L. Pasqua, R. Savino, R. Terracciano Chem. Eur. J. 2010, 16, 8998.
- 9. L. Qiao, Y. Liu, S.P. Hudson, P.E. Yang, B. Liu, Chem. Eur. J. 2008, 14, 151.
- 10. J. Sproß and A. Sinz, Anal. Chem. 2010, 82, 1434.
- 11. E. Calleri, C. Temporini, F. Gasparrini, P. Simone, C. Villani, A. Ciogli, G. Massolini, J. Chromatogr. A 2011, 1218, 8937.
- 12. G. Bayramoğlu, M. Yılmaz, A.Ü.Şenel, M.Y.Arıca, Biochemical Engineering Journal 2008, 40, 262.
- 13. Y. Deng, D. Qi, C. Liu, J. Liu, X. Zhang, Adv. Mater. 2009, 21, 1377.