

Fig. S1 The XRD pattern of magnetic MWNTs-Fe₃O₄ nanomaterials.

Fig. S2 The Raman spectra of acid-treated MWNTs and magnetic MWNTs-Fe₃O₄ nanomaterials. The Raman spectrum of acid-treated MWNTs showed the similar intensity of D bands (1339 cm⁻¹) in comparison to G bands (1597 cm⁻¹), which was due to the presence of more defects at the surface of MWNTs. A small shift in G band and D band peaks was observed in the case of magnetic MWNTs-Fe₃O₄ nanocomposites. Along with a shift in G and D bands, the characteristic band centered at 680 cm⁻¹ was observed at lower Raman shift values in the magnetic MWNTs-Fe₃O₄. This band indicated that the magnetite nanoparticles were successfully immobilized on the surface of MWNTs.

Fig. S3 The hysteresis loops of a) MWNTs-Fe₃O₄ and b) Fe₃O₄ nanoparticles. The two nanoparticles exhibited a superparamagnetic behavior, that is, no remanence was detected at room temperature (above inset). Meanwhile, the PL-MWNTs-Fe₃O₄ nanomaterials in their homogeneous dispersion showed fast moment to the applied magnetic field (2000 Oe) (below inset).

Fig. S4 Representative TEM image of the synthesized magnetic $MWNTs-Fe_3O_4$ nanomaterials with octopus claw-like nanostructures using NaAc.

Fig. S5 Representative TEM image of the synthesized magnetite nanoparticles.

Fig. S6 TGA of (a) MWNTs-Fe₃O₄ and (b) PL-MWNTs-Fe₃O₄. The result indicated that about 22 wt% polyethylene glycol based on the total weight of the MWNTs-Fe₃O₄ could be covalent.

Fig. S7 Confocal fluorescence microscopy images of FITC uptake by U87 cancer cells. The control experiment was investigated by using FITC instead of FITC-labeled nanomaterials in our study, hardly any green fluorescence of FITC was observed, which showed that FITC-labeled MWNTs-Fe₃O₄ nanomaterials could be used as fluorescent probes for cell imaging.

Fig. S8 Infrared thermal images of (a) PL-MWNTs-Fe₃O₄-injected and (b) PL-MWNTs-injected U87 tumor sample at different time points (0, 15, 30 sec) under NIR laser irradiation.

Fig. S9 Histological analysis of surviving mice following PL-MWNTs-Fe $_3O_4$ nanomaterials-based photothermal therapy reveals no overt pathological changes. No significant lesions were detected.