Supporting Information

Figure SI1. Powder X-ray diffraction pattern of : A) PdTPPC-Zn₂Al filler and of PdTPPC-Zn₂Al/PU composite (Diffraction lines are indexed considering R-3m space group and $3R_1$ polytype); B) CO₃- Zn₂Al filler

A

The XRD patterns of PdTPPC-Zn₂Al/PU composite film shows a poor signal likely to be due to the low concentration of porphyrin-LDH filler, only 1 wt%. The amorphous like-halo between $15-30^{\circ}/2\theta$ is ascribed to the polymer itself. The interlayer distances *d* deduced from

B

the position of the first diffraction line are consistent with the presence of (A) PdTPPC ($d \sim 23.0 \text{ Å}$) and (B) CO₃ ($d \sim 7.8 \text{ Å}$) intercalated LDH phases.

Figure SI2. Change in UV-Vis spectrum of PdTPPC- Zn_2Al/PU composite film with exposure at 410 nm (irradiance of 8 W.m⁻²) as a function of time.

Figure SI3. Photophysical measurments PdTPPC-Zn₂Al/PU composite film: A) Emission spectra recorded in air; B) Stern-Volmer plot calculated from PdTPPC phosphorescence decay kinetic curves recorded under different oxygen pressures (**Figure 2A**).

A

Figure SI4. ATR-IR spectra of A) PU and B) CO₃-Zn₂Al/PU films before and after oxygen consumption experiments depicted in **Figure 3**.

A

B

B