## Supporting Information

for

## Self-Deployable Current Sources Fabricated from Edible Materials

Young Jo Kim, Sang-Eun Chun, Jay Whitacre, and Christopher J. Bettinger\*

## Sodium ion (Na<sup>+</sup>) loaded activated carbon (AC) anode

The PGScin/AgNW device containing Na<sup>+</sup> loaded AC/ $\lambda$ -MnO<sub>2</sub> affords to deliver the electric current of 10  $\mu$ A over 3 hr by virtue of the loaded Na<sup>+</sup> on the AC anode. On the contrary, the device with as-made AC and  $\lambda$ -MnO<sub>2</sub> cell displays the faster decays with 0.5 hr. The operation time of the device is closely dependent on the loading of Na<sup>+</sup> on AC anode.



**Fig. S1.** Discharge potential profile obtained from PGScin/AgNW devices with two different cell configurations at -10  $\mu$ A: (1) as-made AC/ $\lambda$ -MnO<sub>2</sub> cell (-Na<sup>+</sup>) and (2) sodium ion-loaded AC/ $\lambda$ -MnO<sub>2</sub> (+Na<sup>+</sup>) cell.

## **Current Profiles of PGScin/AgNW Current Sources**

Various current profiles under multiple contact conditions were illustrated for the operation time of the devices in Fig. S2 (a-c), which are the overall view of Fig. 3 (c-e).



**Fig. S2.** (a-c) Specific current supplying profiles of PGScin/AgNW devices for their operational time under different interfacial contacts. Inset in (a) displays the detailed current profiles exhibited from 0 to 2 mA  $g_{AC}^{-1}$ . Measured currents shown in light grey and 100 point moving averaged values are shown in black line.