Supporting Information

In situ growth of β -FeOOH nanorods on graphene oxide with ultra-high relaxivity for *in vivo* magnetic resonance imaging and cancer therapy

Mei-Ling Chen, Li-Ming Shen, Shuai Chen, Hui Wang, Xu-Wei Chen* and Jian-Hua Wang*

Research Center for Analytical Sciences, Box 332, Northeastern University, Shenyang 110819, China

*Corresponding author.

E-mail: chenxuwei@mail.neu.edu.cn (X.-W. Chen); jianhuajrz@mail.neu.edu.cn (J.-H Wang).

Tel: +86 24 83688944; Fax: +86 24 83676698

Scheme S1. The preparation of water-dispersible DOX-GO-PEG- β -FeOOH nanocomposites.

Figure S1. The TEM images of GO-PEG.

Figure S2. (A) Photographs for the dispersion status of GO-PEG-β-FeOOH in water,
PBS, BSA and DMEM (10% serum-containing medium) for 4 h incubation at 37°C.
(B) Dependence of particle size of GO-PEG-β-FeOOH on its concentration.

Conjugation of GO-PEG-β-FeOOH with RBITC

The successful conjugation GO-PEG-β-FeOOH with RBITC was checked by UV-vis, FL and FT-IR spectra, respectively. Fig. S3A showed the UV-vis spectra of RBITC, GO-PEG-β-FeOOH and GO-PEG-β-FeOOH. The specific absorption of RBITC is 557 nm, after conjugation with GO-PEG-β-FeOOH slight red-shifts was recorded indicating interactions between RBITC and GO-PEG-β-FeOOH. The fluorescence spectra of GO-PEG-β-FeOOH-RBITC clearly illustrated that the conjugation of GO-PEG-β-FeOOH with RBITC endowed it with excellent fluorescent properties (Fig. S3B). As shown in Fig. S3C, the FT-IR spectrum of GO-PEG-β-FeOOH-RBITC presented a increasing band at 1619 cm⁻¹ (N-H virbation) compared with GO-PEG- β -FeOOH, disappeared a band at 2040 cm⁻¹ (N=C=S vibration) compared with RBITC due to the formation of the thiourea structure and some new bands loacated at 1560-1400 cm⁻¹ can be ascribed to the stretching vibrations of the bennzene skeleton in the rhodamine B groups [1]. In addition, the amine concentration present in GO-PEG-β-FeOOH was determined to be about 21.7 μ mol L⁻¹ (Table S1). After conjugation with RBITC, the content of the remaining amine groups in GO-PEG- β -FeOOH-RBITC was 0 μ mol L⁻¹, which indicated that the all of amine groups on the surface of GO-PEG-β-FeOOH react with RBITC.

Figure S3. Characterization of GO-PEG- β -FeOOH-RBITC nanocomposites. (A) UV-vis (B) Fluorescence (C) FT-IR spectra of RBITC, GO-PEG- β -FeOOH and GO-PEG- β -FeOOH-RBITC.

Figure S4. Fluorescence images of 2^{nd} passage and 3^{rd} passage of Hela cells incubated with GO-PEG- β -FeOOH-RBITC (Left: fluorescence images; right: bright-fields images)

Figure S5. Concentration-dependent survival curves of HEK293 human kidney cells treated by GO-PEG- β -FeOOH nanoparticles for 24 h.

Sample	$C_{amine} \ (\mu mol \ L^{-1})$
GO-COOH	0
GO-PEG	45
GO-PEG-β-FeOOH	21.7
GO-PEG-β-FeOOH-RBITC	0

Table S1: The amine concentration of GO-based nanomaterials.

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B This journal is The Royal Society of Chemistry 2013

References

 H. Wu, S. Zhang, J. Zhang, G. Liu, J. Shi, L. Zhang, X. Cui, M. Ruan, Q. He and W. Bu, *Advanced Functional Materials*, 2011, **21**, 1850.