SUPPORTING INFORMATION

Graphene oxide-based homogenous biosensing platform for ultrasensitive DNA detection based on chemiluminescence resonance energy transfer and exonuclease III-assisted target recycling amplification

Chun Chen and Baoxin Li*

Key laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China

Figure S1. Comparison of the quenching efficiency of GO and SWCNT in this CRET system. Measurement results of the sensing system under different conditions. (a) luminol $-H_2O_2-HRP$ + probe $(1.0 \times 10^{-7} \text{ M})$ (b) luminol $-H_2O_2-HRP$ + SWCNT (80 µg/mL) + probe $(1.0 \times 10^{-7} \text{ M})$; (c) luminol $-H_2O_2-HRP$ + GO (80 µg/mL) + probe $(1.0 \times 10^{-7} \text{ M})$.

Figure S2. Effect of Exo III reaction time on the sensitivity of the CRET platform for DNA detection.

Figure S3. Representative recorder outputs of the CRET system for target DNA with different concentrations in the absence of Exo III.

Figure S4. Response of the GO-based FRET system to target DNA with different concentrations (0.01 pM, 0.1 pM, 0.4 pM, 0.8 pM and 1.2 pM) in the presence of 20 U Exo III.