Supporting information

Photochemical crosslinking of hyaluronic acid confined in nanoemulsions: towards nanogels with a controlled structure

Léa Messager^a, Naira Portecop^a, Emilie Hachet^b, Véronique Lapeyre^a, Isabelle Paintrand^b, Bogdan Catargi^c, Rachel Auzély-Velty^b, Valérie Ravaine^a*

^a Université de Bordeaux, ISM, UMR 5255, ENSCBP, 16 avenue Pey Berland, 33607 Pessac, France

^b Centre de Recherches sur les Macromolécules Végétales (CERMAV-CNRS), affiliated with Université Joseph Fourier, 601 rue de la Chimie, 38041 Grenoble, France

^c CBMN UMR 5248, Université Bordeaux, Allée de Saint-Hilaire, 33600 Pessac, France

Figure S1. ¹H-NMR spectra of HA-MA derivatives with varying degrees of methacrylation. Conditions: 400 mHz, T=80°C, c = 8 mg/mL in D₂O.

Figure S2. Evolution of the cubic radius of the emulsion over time (5 days), as a function of salt concentration in the droplets.

Figure S3. Evolution of the emulsion size over 1 week. After 7 days, both size and size distribution increase. The colored zone corresponds to the time scale useful for photopolymerization.

Figure S4. GPC (a) and ¹H-NMR (b) traces of HA before and after been confined in water-inoil nanoemulsion. HA samples were analyzed by means of a GPC equipment made of a JASCO PU980 pump, equipped with a double detector (RI OptolabrEX from Wyatt Technolgu and MALS DAWN Heleos II). PLaquagel-OH columns (Polymer Laboratories) were eluted with a PBS buffer, at a flow rate of 0.6 mL/min. An injection loop of 100 μ L was used. HA solutions (3 g/L) were prefiltered before injection with a 0.2 μ m syringe filter.

Figure S5. a) SEM and b) TEM images of nanogels in cyclohexane. Conditions : HA-MA₂, DM=0.25, irradiation under UV 2H-100% Pmax.

Figure S6. Summary of the size evolution of the emulsion (before and after photopolymerization) and of the nanogels as a function of photopolymerization conditions. Samples: HA-MA a) DM=0.15; b) DM=0.40.

Figure S7. Summary of the size evolution of the emulsion after photopolymerization and of the resulting nanogels as a function of photopolymerization conditions. Sample: HA-MA, DM=0.25.

Figure S8. Summary of the size evolution of the emulsion (before and after photopolymerization) in similar photopolymerization conditions using a fresh or an aged emulsion. Sample: HA-MA, DM=0.25.

Figure S9. TEM morphologies of HA-MA nanogels: a) at t_0 ; b) after 2 weeks and c) after 1 month. Respective scale bars are 800 nm; 1 μ m and 700 nm. Sample: HA-MA, DM=0.4.

Figure S10. Enzymatic degradation of nanogels with varying crosslinking density monitored by carbazole assay. Conditions : HA-MA₂, DM=0.25, Photopolymerization 1h-100% and 2h-100%, [Nanogel]=2g/L, [Hase]=100UI/mL.