Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B This journal is $\ensuremath{\mathbb{O}}$ The Royal Society of Chemistry 2013

Supporting information

Neuronal cells loaded with PEI-coated Fe₃O₄ nanoparticles for magnetically-guided nerve regeneration

M.Pilar Calatayud,^{a*} Cristina Riggio,^{*b}Vittoria Raffa,^b Beatriz Sanz,^a Teobaldo E. Torres,^{a,c,d} M. Ricardo Ibarra,^{a,c} Clare Hoskins,^e Alfred Cuschieri,^e Lijun Y. Wang,^e J. Pinkernelle,^fGerburg Keilhoff^f and Gerardo F. Goya^{a,c}

^aInstituto de Nanociencia de Aragón, Universidad de Zaragoza, 50018 Zaragoza, Spain

^cDepartamento de Física de la Materia Condensada, Universidad de Zaragoza, 50009 Zaragoza, Spain

^dLaboratorio de Microscopias Avanzadas (LMA), Universidad de Zaragoza, 50018 Zaragoza, Spain

^eInstitute for Medical Science and Technology, University of Dundee, DD21FD Dundee, UK

^fOtto-von-Guericke University, Institute of Biochemistry and Cell Biology, D-39120 Magdeburg, Germany.

^{*}These authors contributed equally to this work.

^bScuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B This journal is O The Royal Society of Chemistry 2013

Figure S1. Hydrodynamic diameter distribution of PEI-coated MNPs as obtained from the DLS measurements.

Figure S2. Fine scanning of the XPS spectrum for the energy window showing the peaks corresponding to the Fe 2p core-level signals from PEI-MNPs.

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B This journal is $\ensuremath{\mathbb{O}}$ The Royal Society of Chemistry 2013

Figure S3. Zeta potential values vs. pH for naked (circles) and PEI-coated (filled squares) magnetic nanoparticles. The lines are only a guide for the eye.

Figure S4. TGA curves of naked MNPs (solid line) and PEI-MNPs (dashed line) under N₂ atmosphere. The TGA data of pure PEI polymer obtained under the same conditions (doted-dash line) is also shown for comparison.

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B This journal is The Royal Society of Chemistry 2013

Figure S5. ATR-IR spectra of (a) PEI polymer, (b) PEI-MNPs. The arrows mark the position for the characteristics peaks of PEI and (c) naked-MNPs.

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B This journal is O The Royal Society of Chemistry 2013

Figure S6. Magnetic data obtained from the frozen colloids: (a) Hysteresis loops taken at T = 10 and 250 K of PEI-MNPs. The inset shows a magnification of the curves at low field. (b) Magnetization vs. temperature curves obtained in zero-field and field-cooling modes. Samples were cooled down to T = 5 K and measured with increasing T in a constant field of H = 100 Oe.

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B This journal is O The Royal Society of Chemistry 2013

Figure S7. Representative SEM/FIB image on SH-SY5Y cells showing the presence of (i) MNPs agglomerates attached to the cell membrane. (ii) Analysis of transversal slices performed by ion milling confirmed the presence of PEI-MNPs clusters within the cytoplasm. The cells were cultured (24 h with 5ug/mL PEI/MNPs) and washed several times before fixing. Elemental analysis by EDX spectra (right panels (i) and (ii) of target areas confirmed the Fe content expected for the PEI-MNPs core.