Supporting Information

Microwave-assisted Synthesis of Highly Luminescent AgInS2/ZnS Nanocrystals for Dynamic Intracellular Cu (II) Detection

Wei-Wei Xiong, Guo-Hai Yang, Xing-Cai Wu*, and Jun-Jie Zhu*

Fig. S1 EDS spectrum of the AgInS₂/ZnS NCs

The result indicated the presence of Ag, In, Zn and S.

Fig.S2 Photographs of water-soluble $AgInS_2 NCs$ (a) and $AgInS_2/ZnS NCs$ (b) under a 365 nm UV illumination.

Fig. S3 Cell viability assay of HeLa cells incubated with different concentrations of AgInS₂/ZnS NCs for 24 h, respectively. Blank (A), 200 μ g mL⁻¹ (B), 100 μ g mL⁻¹ (C), 50 μ g mL⁻¹ (D), 25 μ g mL⁻¹ (E), 10 μ g mL⁻¹ (F), 5 μ g mL⁻¹ (G)

Fig. S4 Fluorescence responses of AgInS₂/ZnS NCs (0.02 mg mL⁻¹) towards ROS (10 μ M H₂O₂, 10 μ M Vc, and 10 μ M O₂^{*-}, respectively)

In order to assess the effect of reactive oxygen species (ROS) on the PL intensity of AgInS₂/ZnS probes, the PL quenching effect of ROS to probes was investigated. The concentrations of H₂O₂, NaClO, and ascorbic acid (Vc) were all 10.0 μ M. O₂^{*-} was generated by the reaction of H₂O₂ with NaClO as previously reported.^[s1] As shown in Fig. S4, only a little change of the PL intensity was observed for the H₂O₂, 10 μ M Vc, and 10 μ M O₂^{*-}. This result ruled out the possibility of intracellular fluorescence quenching of the probes by ROS.

References

[S1] D. W. Li, L. X. Qin, Y. Li, R. P. Nia, Y. T. Long, H. Y. Chen, *Chem. Commun.*, 2011, **47**, 8539.