Supporting Information for:

Shell-crosslinked knedel-like nanoparticles induce lower immunotoxicity than their non-crosslinked analogs

Mahmoud Elsabahy^{1,2*}, Sandani Samarajeewa¹, Jeffery E. Raymond¹, Corrie Clark¹ and

Karen L. Wooley^{1*}

¹Department of Chemistry, Department of Chemical Engineering, Laboratory for Synthetic-Biologic Interactions, Texas A&M University, P.O. Box 30012, 3255 TAMU, College Station, Texas 77842-3012, United States, ²Department of Pharmaceutics, Faculty of Pharmacy, Assiut Clinical Center of Nanomedicine, Al-Rajhy Liver Hospital, Assiut University, Assiut, Egypt

*Correspondence to:

mahmoud.elsabahy@chem.tamu.edu, wooley@chem.tamu.edu

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B This journal is O The Royal Society of Chemistry 2013

Table S1. The cytotoxicity (IC₅₀) of Lipofectamine, PEG-micelles and cSCKs that either PEGylated or not and with varying degrees of crosslinking. The IC₅₀ values of PEGylated nanoparticles could not be determined because high cell-viabilities were observed at the range of the tested concentrations (1-100 μ g/mL).

Nanoparticle	IC_{50} (µg/mL) ± SD	Significance (p < 0.05)*
Lipofectamine	26.3±1.7	Lipofectamine has significantly lower IC ₅₀ than the cSCKs
5%-cSCKs	46.6±5.4	
(5% crosslinking)		
PEG-micelles		
(0% crosslinking)		
PEG-5%-cSCKs		
(5% crosslinking)		
PEG-20%-cSCKs		
(20% crosslinking)		

*Values are presented as mean \pm SD of at least three independent experiments. Significant differences between two groups were evaluated by Student's t test (unpaired) or between more than two groups by one-way ANOVA followed by Tukey's multiple comparison test. Differences between different groups were considered significant for *p* values < 0.05.

Figure S1. Cytokine induction data for control, 5%-cSCKs (5 μ g/mL), PEG-micelles (5 and 50 μ g/mL), PEG-5%-cSCKs (5 and 50 μ g/mL) and PEG-20%-cSCKs (5 and 50 μ g/mL). The expression of MCP-1, MIP-1 α and MIP-1 β was particularly enhanced upon the PEGylation of micelles and 5%-cSCKs even for the 20%-crosslinked PEG-cSCKs.

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B This journal is The Royal Society of Chemistry 2013

Figure S2. Degradation of Cy3-labeled siRNA (0.6 μ g siRNA/42.7 μ L, 10 mM Tris, pH 7.4) that was incubated in 87% fetal bovine serum after 2, 8, 24, 48 and 72 h: (1) siRNA in water, (2) siRNA in serum, siRNA complexed with (3) 5%-cSCKs, (4) PEG-micelles, (5) PEG-5%-cSCKs and (6) PEG-20%-cSCKs.

Figure S3. Typical AFM topography profiles of the PEG-20%-cSCKs (A), PEG-5%-cSCKs (B), PEGylated micelles (C) and non-PEGylated 5%-cSCKs (D) after deposition on mica.

Figure S4. 3D Renderings of AFM topography for the PEG-20%-cSCKs (A), PEG-5%-cSCKs (B), PEGylated micelles (C) and non-PEGylated 5%-cSCKs (D) after deposition on mica.