Electronic Supplementary Information (ESI[†])

pH-Responsive Physical Gels Based on Poly(meth)acrylic Acid-Containing Crosslinked Particles. Structure - Mechanical Properties Relationship.

Silvia S. Halacheva,^a Tony J. Freemont^b and Brian R. Saunders^{*a}

^aUniversity of Manchester, Materials Science Centre, Grosvenor Street, Manchester,

M1 7HS, U. K.

^bDivision of Regenerative Medicine, School of Medicine, Stopford Building, Oxford Road, Manchester, M13 9PT, U. K.

* To whom correspondence should be addressed:

Tel: 44 (0)161 306 5944;

E-mail: Brian.Saunders@manchester.ac.uk

Fig. S1. (a) ¹H NMR and (b) ¹³C NMR spectra of DTP in DMSO- d_6 .

Fig. S2. GPC traces of (a) PMMA-MAA copolymers; (b) PEA-MAA copolymers.

Fig. S3. ¹H NMR spectra of (a) PMMA-38MAA and (b) PEA-65MAA in DMSO- $d_{6.}$

To determine the percentage MAA content in PMMA-38MAA the intensity of **A** was set to 3H. It follows that

% MAA = { $(\mathbf{B} - 2)/\mathbf{B}$ } × 100

or

% MAA = {(C-3)/C} × 100

To determine the percentage MAA content in PEA-65MAA the intensity of **A** was set to 2H. It follows that

% MAA = {($\mathbf{C} - 2$)/ \mathbf{C} } × 100

Fig. S4. Potentiometric titration data for non-crosslinked PMMA-MAA and PEA-MAA particles.

	pH	5.4	6.0	6.5	7.0	7.5	8.0
Entry							
Liiu y	Particle composition			$D_{\rm c}$ (nm)			
1	PMMA-29MAA	-	1928	1830	1650	1245	45
				2250	2455	1865	905
2	PMMA-20MAA/9CYS	-	1355	^{<i>a</i>} 4.6	^{<i>a</i>} 5.9	^{<i>a</i>} 2.6	^{<i>a</i>} 0.1
3	PMMA-25MAA/4DTP	_	1386	2236	3124	1800	1005
				^{<i>a</i>} 4.2	^{<i>a</i>} 11.4	^{<i>a</i>} 2.2	^{<i>a</i>} 0.4
4	PMMA-38MAA	-	^b 1826 ⁵⁹ ,370 ⁴¹	$1027^{88}, 211^{12}$	778	574	68
5	PMMA-24MAA/14CYS	-	1485	1923	2235	1828	535
				^{<i>a</i>} 2.3	^{<i>a</i>} 3.4	^{<i>a</i>} 1.9	^a 0.1
6	PMMA-36MAA/2DTP	-	1490	2543	3400	3125	620
				^{<i>a</i>} 4.9	^{<i>a</i>} 11.9	^{<i>a</i>} 9.1	^{<i>a</i>} 0.1
7	PMMA-65MAA	2215	151	160	161	101	67
0		2049	2158	3414	3052	2898	1586
0	FIMIMA-4JMAA/20D1F		^a 1.2	^a 4.7	^a 3.3	^a 2.8	^a 0.5
9	PEA-30MAA	1845	1730	1600	435	205	60
		b	С	С	b		
10	PEA-20MAA/10CYS	307 ⁷ , 1986 ⁹³	$185^{26},990^{10},\\4340^{64}$	$191^{19},1095^{23},\\4505^{58}$	200 ²⁴ , 2855 ⁶⁶	1540	395
			^{<i>d</i>} 10.4	^{<i>d</i>} 11.5	^{<i>d</i>} 2.9	^a 0.5	^{<i>a</i>} 0.01
11	PEA-10MAA/20DTP	с	с	с	с	b	b
		$47^{15},$ $232^{30},$ 2400^{55}	$\begin{array}{c} 146^{11},\!830^{37},\\ 4302^{52} \end{array}$	$210^{18}, 1210^{41}, \\4886^{41}$	$207^{31},770^{7},$ 4525^{61}	264 ⁴⁵ , 2797 ⁵⁵	67 ¹⁵ , 210 ⁸⁵
		2100	^d 5.8	^d 8.4	^d 6.7	^d 1.6	^d 0.0007
12	ΡΕΑ-65ΜΔΔ	3909	3062	1322^{81} 170 ¹⁹	1257	725	210
13	PEA-59MAA/6DTP	c	c	c c	b	125	210
		$230^{16},$ $1032^{29},$ 4350^{55}	$270^{12},$ $1179^{25},$ 4543^{63}	$370^{22},$ 1592^{18} 4560^{60}	1274 ⁹² , 188 ⁸	1114	963
		4550	4545	4500			

Table S1. Variation of the Hydrodynamic Diameter (D_h , in nm) with pH for non-crosslinked and crosslinked particles

^{*a*} The swelling ratios calculated from the ratio of the volume of the swelled particles at given pH to the volume of the non-swelled particles at the lowest pH tested. ^{*b*} Bimodal distribution. ^{*c*} Trimodal distribution. ^{*d*} Swelling ratios calculated for the slow modes. ^{*e*} The intensities of the different modes as percentages are presented as superscript on the particles' D_h . The swelling ratios of the PEA-59MAA/6DTP particles are not presented as the particles were already swollen at the pH of 5.4.

Fig. S5. Size distribution functions for (a) non-crosslinked PMMA-29MAA and (b) crosslinked PMMA-25MAA/4DTP particles taken at various pH values.

Fig. S6. SEM images of freeze-dried PMMA-25MAA/4DTP gels formed at pH 7.0

Fig. S7. Variation of tand with pH for PMMA-MAA and PEA-MAA-based crosslinked particles

Fig. S8. The variation of G' and tand with the percentage strain for various PMMA-MAA-based crosslinked particle gels.

Fig. S9. The variation of (a) G' and (b) tand with the percentage strain for PEA-MAA-based crosslinked particle gels.