Supporting Information

Nitrogen doped graphene nanosheets supported platinum nanoparticles as high performance electrochemical homocysteine biosensor

Palanisamy Kannan,*^a Thandavarayan Maiyalagan,*^b Nanda Gopal Sahoo,^c and Marcin Opallo ^a

^a Institute of Physical Chemistry, Polish Academy of Sciences 44/52 ul. Kasprzaka, 01-224 Warszawa, Poland.

^b Materials Science and Engineering Program
204 E. Dean Keeton St, Stop C2200
The University of Texas at Austin, Austin, TX78712, USA.

^c Institute of Materials Research and Engineering 3 Research link, Singapore 117602.

*Corresponding authors: maiyalagan@gmail.com (Maiyalagan); ktpkannan@gmail.com (Kannan); Phone: +48 223 433 375; Fax: +48 223 433 333.

Fig. S1 DPVs for the oxidation of HCY at GNs/PtNPs modified GC electrode in different concentrations (a) 0, (b) 10, (c) 20, (d) 30, (e) 40, (f) 50, (g) 60, and (h) 70 μ M in the presence of 0.2 mM of AA in 0.2 M PB solution. Pulse width = 0.05 s, amplitude = 0.05 V, sample period = 0.02 s and pulse period = 0.2 s.

Fig. S2 Amperometric *i*–*t* curve responses (at a constant working potential of +0.60 V vs Ag/AgCl) obtained for 2 nM HCY (a, b and c) and 1 μ M of dopamine (d), epinephrine (e) and L-dopa (f), then each addition was made for 2 nM HCY (g, h, and i) at N-GNs/PtNPs modified GC electrode in 0.2 M PB solution (pH=7.2) at a regular interval time of 50 s.

Table S1 Detection limit of HCY is obtained at different chemically modified electrodes vs.

N-GNs/PtNPs nanocomposites modified electrode.

Modified Electrodes	Detection Limit of HCY	References
Carbon-nanotube paste (CNTP) electrode	4.6 µM	1
Fluorosurfactant (i.e. Zonyl FSO)-modified gold electrode	5 μΜ	2
Platinum/poly(methyl violet) (Pt/MV) chemically modified electrode	10 µM	3
Boron-doped diamond (BDD) thin film electrodes	1 nM	4
Colloidal gold-cysteamine-carbon paste electrode	30 nM	5
Carbon nanotube modified glassy carbon electrode	60 nM	6
Electropolymerized film of 2-amino-1,3,4-thiadiazole (p-ATD)		
modified glassy carbon electrode	100 nM	7
Nitrogen doped graphene supported Pt nanoparticles modified		
glassy carbon electrode	200 pM	This work

References

- 1. N. S. Lawrence, R. P. Deo and J. Wang, *Talanta*, 2004, **63**, 443-449.
- 2. Z. Chen and Y. Zu, *Journal of Electroanalytical Chemistry*, 2008, **624**, 9-13.
- 3. H. Xu, W. Zhang, W. Zhu, D. Wang, J. Ye, K. Yamamoto and L. Jin, *Analytica Chimica Acta*, 2005, **545**, 182-188.
- 4. O. Chailapakul, W. Siangproh, B. V. Sarada, C. Terashima, T. N. Rao, D. A. Tryk and A. Fujishima, *Analyst*, 2002, **127**, 1164-1168.
- 5. L. Agüí, C. Peña-Farfal, P. Yáñez-Sedeño and J. M. Pingarrón, *Talanta*, 2007, **74**, 412-420.
- 6. K. Gong, Y. Dong, S. Xiong, Y. Chen and L. Mao, *Biosensors and Bioelectronics*, 2004, **20**, 253-259.
- 7. P. Kalimuthu and S. A. John, *Bioelectrochemistry*, 2010, **79**, 168-172.

Table S2. Determination of HCY in human blood serum samples using N-GNs/PtNPs nanocomposite modified GC electrode^a

	Blood Serum	Blood Serum	Blood Serum	Blood Serum
	Sample 1	Sample 2	Sample 3	Sample 4
Original value (µM)	50.1 ± 0.1	50.0 ± 0.1	50.1 ± 0.1	50.1 ± 0.1
Spike (µM)	20	20	20	20
After spike (µM)	70.20 ± 0.1	70.10 ± 0.1	70.23 ± 0.1	70.28 ± 0.1
Recovery (%)	99.8%	99.8%	99.7%	99.6%

^aFour replicate measurements were made on the sample.