Microporous titanosilicates Cu²⁺- and Co²⁺-ETS-4 for storage and slow release of therapeutic nitric oxide.

Moisés L. Pinto,*^{*a,b*} Ana C. Fernandes, João Rocha,^{*b*} Artur Ferreira,^{*b*} Fernando Antunes,^{*a*} and João Pires^{*a*}

^a Department of Chemistry and Biochemistry, and CQB, Faculty of Sciences, University of Lisbon, Ed. C8, Campo Grande, 1749-016 Lisboa, Portugal. Fax: +351 217500088; Tel:+351 217500898;

^b Department of Chemistry, CICECO, University of Aveiro, 3810-193 Aveiro, Portugal. Fax: +351 234370084; Tel:+351 234370360; E-mail: moises.pinto@fc.ul.pt

Nitrogen adsorption

Figure S1 – Low temperature nitrogen adsorption-desorption isotherms of the Na-ETS-4 and the Co^{2+} and Cu^{2+} exchanged samples.

Figure S2 – Particle size distribution of the Na-ETS-4 sample, determined by DLS.

XRD

Figure S3 – XRD patterns of the Co^{2+} exchanged samples and the initial Na-ETS-4.

Figure S4 - XRD patterns of the Cu^{2+} exchanged samples and the initial Na-ETS-4.

Figure S5 – Comparison plots of the XRD of the samples with the diffraction pattern of ETS-4.

Figure S6 – Comparison of experimental XRD powder pattern of Cu-ETS-4-b with simulated powder patterns of ETS-4 structure with substitution of Na⁺ by Cu²⁺ on different cation sites: a) Cu^{2+} at site 1 and Na⁺ at site 1, b) Cu^{2+} at site 1 and Na⁺ at site 2, c) Cu^{2+} at site 2 and Na⁺ at site 1 and d) Cu^{2+} at site 2 and Na⁺ at site 2.

Figure. S7 - DRIFT spectra of the materials loaded/not loaded with NO.

NO release kinetics

To make a more detailed analysis of the release kinetic data of the materials, the pseudo-second order equation (Equation 1) was adjusted, were k_2 is the kinetic constant, q_e is the equilibrium released amount and q_t is the amount released at time t.

Equation 1
$$\frac{t}{q_t} = \frac{1}{k_2 q_e^2} + \left(\frac{1}{q_e}\right)t$$

The fitting of the above equation to the release data is depicted in Figure S6

Figure S8 – Fitting of the pseudo-second order equation to the release data of NO under high-vacuum, from the studied materials