1	Supporting Information				
2	Chiral Nanoparticle Pyramids for Ultrasensitive Endonuclease Detection				
3					
4					
5					
6					
7					
8					
9					
10					
11					
12					
13					
14					
15					
16					
17					
18					
19					
20					
21					
22					
23					
24					

1 Experimental

2 Materials.

The bis-(p-sulfonatophenyl)phenylphosphine dihydrate dipotassium salt (BPS), trisodium 3 citrate ($C_6H_5Na_3O_7 \bullet 2H_2O_2 \ge 99.0\%$) and tetrachloroauric acid trihydrate (HAuCl₄•3H₂O₂) 4 99.9%) were obtained from Sigma Aldrich Chemical Company (Atlanta, GA, USA). All 5 6 other chemicals were of analytical grade purity or better and were used as received without further purification. All DNA oligonucleotides (sequences shown in Table S1, 7 8 supporting information) were obtained from Sangon (Shanghai, China). The stock 9 solutions of DNA were prepared with 100 mM Tris-HCl solution (pH=7.5) and kept 10 frozen at -18°C during storage. DNase I was purchased from Aladdin Industrial Corporation (Shanghai, China). The cleavage buffer for DNase I was 10 mM Tris-HCl 11 solution (pH=7.5) containing 10 mM MgCl₂ and 0.5 mM CaCl₂. Ultrapure water (18 12 $M\Omega \cdot cm$) was purified with a Millipore filtration system and used in all experiments. All 13 14 glassware was cleaned with aqua regia (HCl : HNO₃ in a 3 : 1 ratio by volume) for 12 h before use. 15

16 Instruments

Transmission Electron Microscopy (TEM) images were obtained using a JEOL JEM2100 transmission electron microscope operating at an acceleration voltage of 200 kV.
The chirality of the pyramid nanostructures was characterized by MOS-450/AF-Circular
dichroism. UV-Visible (UV-Vis) spectra were collected on a UNICO 2100PC UV/Vis
spectrophotometer. The size distribution was obtained using a Malvern Zetasizer Nano
ZS instrument. A 633 nm laser source and backscattering detector at 173° were used for
the dynamic light scattering (DLS) experiment.

24 Synthesis and Functionalization of AuNPs

Two different-sized AuNPs (AuNP₁ = 15 ± 2 nm, and AuNP₂ = 25 ± 3 nm) were synthesized by reduction of HAuCl₄ using trisodium citrate. Briefly, 2.5 mL of freshly prepared trisodium citrate (1% by weight) was quickly added to 100 mL of boiling aqueous HAuCl₄ (0.25 mM) under vigorous stirring and reflux. After boiling for 30 min, 1 the reaction was complete and AuNP₁ were obtained. The 1.6 mL trisodium citrate (1%) by weight) was used to prepare AuNP₂. The synthesized AuNPs were cooled to room 2 3 temparaure and stored at 4°C. AuNP-DNA conjugates were then prepared. Briefly, the AuNPs were first modified with BPS. Then, the BPS-protected AuNPs were mixed with 4 DNA oligonucleotides in a molar ratio of 1 : 5. After incubation for 24 h, the samples 5 were centrifuged to remove free oligonucleotides. The concentration of AuNP-DNA 6 7 conjugates was calculated using Lambert-Beer's law: $c = A_{450} / (b\epsilon_{450})$, A_{450} is the absorbance value at 450 nm, ε_{450} is the corresponding extinction coefficients for each 8 AuNP size, ε_{450} (15 nm) = 2.18×10⁸ M⁻¹ cm⁻¹, ε_{450} (25 nm) = 1.1×10⁹ M⁻¹ cm⁻¹, b = 1 cm. 9

10 Self-assembly of AuNP Pyramids.

The AuNP pyramids were constructed by mixing four equal amounts of AuNP-DNA conjugates using 1×TBE buffer (pH = 7.5, containing 50 mM NaCl) as the hybridization buffer. After overnight incubation at room temperature, the pyramids with high yield were obtained. Five different types of AuNP pyramids were constructed: all four AuNP₁s (denoted as 4AuNP₁); three AuNP₁s + one AuNP₂ (3AuNP₁+1AuNP₂); two AuNP₁s + two AuNP₂s (2AuNP₁+2AuNP₂); one AuNP₁ + three AuNP₂s (1AuNP₁+3AuNP₂); four AuNP₂s (4AuNP₂).

18 Assay of DNase I Activity.

The stability of AuNP pyramids was improved by adding thiolated poly(ethylene glycol) 19 molecules (mPEG-SH, Mw = 1000) to the pyramid solution at a molar ratio of 500 : 1. 20 After 30 min incubation, the solution was centrifuged at 5,000 g for 10 min and then 21 suspended in 0.5 mL of DNase I buffer (10 mM Tris-HCl, 10 mM MgCl₂, 0.5 mM CaCl₂, 22 pH =7.5) at a final concentration of 2 nM. Different amounts of DNase I were then added 23 to the solution to give final volumes of 200 µL. To ensure the full reaction, the mixture 24 was incubated for 30 min at 37°C. The CD spectra were then recorded to determine 25 26 DNase I activity.

27

Table S1. ssDNA sequences used to form AuNP pyramids

Name	Sequence
Y1	HS-5'-TTT GCC TGG AGA TAC ATG CAC ATT ACG GCT TTC CCT ATT AGA AGG TCT CAG GTG CGC GTT TCG GTA AGT AGA CGG GAC CAG TTC GCC-3'
Y2	HS-5'-TTT CGC GCA CCT GAG ACC TTC TAA TAG GGT TTG CGA CAG TCG TTC AAC TAG AAT GCC CTT TGG GCT GTT CCG GGT GTG GCT CGT CG
<i>Y3</i>	HS-5'-TTT GGC CGA GGA CTC CTG CTC CGC TGC GGT TTG GCG AAC TGG TCC CGT CTA CTT ACC GTT TCC GAC GAG CCA CAC CCG GAA CAG CCC-3'
Y4	HS-5'-TTT GCC GTA ATG TGC ATG TAT CTC CAG GCT TTC CGC AGC GGA GCA GGA GTC CTC GGC CTT TGG GCA TTC TAG TTG AAC GAC TGT CGC-3'

2

Figure S2. Some other TEM images of 3AuNP₂+1AuNP₁ pyramid.

Figure S3. TEM images of 4AuNP₁ pyramid (A), 1AuNP₂+3AuNP₁ pyramid (B),
2AuNP₂+2AuNP₁ pyramid (C), 4AuNP₂ pyramid (D).

Figure S4. UV-Vis spectra of AuNP₁, AuNP₂ and 1AuNP₁+3AuNP₂ pyramid.

Figure S5. CD spectra of the five kinds of AuNP pyramids.

2 Table S2. Detection of DNase I in FBS samples

sample	Original concentration (U/mL)	Spiked concentration (U/mL)	Determined mean ± SD ^a (U/mL)	Recovery (%)
FBS 1	0.034	0.05	0.079±0.005	93.3±5.0
		0.1	0.132±0.004	97.7±5.2
FBS 2	0.025 _	0.05	0.081±0.003	109.1±7.1
		0.1	0.131±0.005	106.3±4.5

3 a: SD was calculated based on three parallel experiments for each sample.