Impact of alkaline metal ions Mg<sup>2+</sup>, Ca<sup>2+</sup>, Sr<sup>2+</sup> and Ba<sup>2+</sup> on the structural, optical, thermal and antibacterial properties of ZnO nanoparticles prepared by co-precipitation method

Abdulrahman Syedahamed Haja Hameed <sup>a,</sup> \*, Chandrasekaran Karthikeyan<sup>a</sup>, Venugopal Senthil kumar<sup>b</sup>, Subramanian Kumaresan<sup>b</sup> and Ganasan Ravi<sup>c</sup>

<sup>a</sup> PG and Research Department of Physics, Jamal Mohamed College, Tiruchirappalli-620 020, Tamil Nadu, India.
<sup>b</sup> Department of Plant biology and Plant biotechnology, R.K.M. Vivekananda College, Chennai-600 004, Tamil Nadu, India.
<sup>c</sup> School of Physics, Alagappa University, Karaikudi 630 003, Tamil Nadu, India.

### Characterization

## X-Ray powder diffraction (XRD) studies

The XRD patterns of the ZnO NPs samples were collected using a X'PERT PRO PANalytical Xray diffractometer with CuK $\alpha$  (40 kV, 30 mA) radiation source. The ZnO NPs samples were gently crushed before being smeared on a clean glass slide. The powder diffraction patterns were collected over the 2 $\theta$  in the range between 10°-80° with a scan speed and sampling width of 2 min<sup>-1</sup> and 0.05° respectively.

# X-ray Photoelectron spectroscopy (XPS) studies

The XPS measurements were performed with XPS instrument (Carl Zeiss) equipped with Ultra 55 FESEM with EDS. All the spectra were acquired at a pressure using ultra high vacuum with Al Kα excitation at 250W.

# High Resolution Scanning Electron Microscope studies

HRSEM was performed on the ZnO samples using a FEI - QUANDA 200F microscope operating at 30 kV. The microscope was equipped with a charge-coupled device (CCD) camera. The samples were prepared by 1mg of ZnO NPs samples coated with 1.2 nm gold particle separation on a carbon tape using the low vacuum.

### **Energy dispersive X-ray spectroscopy studies**

Energy dispersive X-ray spectroscopy was done using an EDAX (model: AMETEK) with FEI -QUANDA 200F high resolution scanning electron microscope operated at 30 kV. Dry powdered samples were attached to the substrate using a double-sided carbon tape and mounted onto the sample holder.

#### Fourier Transforms Infra-Red (FT-IR) spectroscopy studies

Perkin-Elmer Fourier transform infra-red (FT-IR) spectrometer was used in transmission mode and the corresponding spectra were recorded in the range of 4000-400 cm<sup>-1</sup> using the KBr pellet technique for pure ZnO and alkaline metal ions  $Mg^{2+}$ ,  $Ca^{2+}$ ,  $Sr^{2+}$  and  $Ba^{2+}$  doped ZnO NPs samples .

#### Photoluminescence (PL) studies

Room temperature PL measurements were performed for the pure ZnO and alkaline metal ions  $Mg^{2+}$ ,  $Ca^{2+}$ ,  $Sr^{2+}$  and  $Ba^{2+}$  doped ZnO NPs samples with excitation wavelength of 254 nm using Jobin yvon Flurolog-3-11 spectrofluorometer having Xenon lamp 450W as a source and resolution of 0.2 nm. The emission spectra were recorded in the UV and visible range (270-600nm) using as software DATA MAX / GRAMS/31.

### Thermal analysis

The thermogravimetric and differential thermal analysis was carried out by using of TGA Q500 U20.10 Build 36 thermal analyzer for pure ZnO and alkaline metal ions  $Mg^{2+}$ ,  $Ca^{2+}$ ,  $Sr^{2+}$  and  $Ba^{2+}$  doped ZnO NPs samples recorded in the temperature range 30-800°C, in nitrogen atmosphere with a heating rate of 20 °C min<sup>-1</sup>.



**Figure S1.** The William-Hall plot analysis of (a) Pure ZnO, (b) ZnO:Mg, (c) ZnO:Ca, (d) ZnO:Sr and (e) ZnO:Ba NPs solid line show the theoretical fit.



**Figure S2.** XPS spectra of O (1s) for (a) Pure ZnO, (b) ZnO:Mg, (c) ZnO:Ca, (d) ZnO:Sr and (e) ZnO:Ba NPs.



Figure S3. XPS spectra of (a) ZnO:Mg, (b) ZnO:Ca, (c) ZnO:Sr and (d) ZnO:Ba NPs.

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B This journal is  $\ensuremath{\mathbb{O}}$  The Royal Society of Chemistry 2013



**Figure S4**. XPS wide scan graph of (a) Pure ZnO, (b) ZnO:Mg, (c) ZnO:Ca, (d) ZnO:Sr and (e) ZnO:Ba.

| Zn 2p      |            | O 1s  |            | Doping %     |              |
|------------|------------|-------|------------|--------------|--------------|
| Atom. Con% | Mass. Con% | Atom. | Mass. Con% | Atom. Con%   | Mass. Con%   |
|            |            | Con%  |            |              |              |
| 18.39      | 47.94      | 81.61 | 52.06      | -            | -            |
| 32.61      | 66.37      | 67.15 | 33.44      | 0.24 (Mg 1s) | 0.18(Mg 1s)  |
| 19.29      | 49.37      | 80.62 | 50.48      | 0.09 (Ca 2p) | 0.15(Ca 2p)  |
| 16.83      | 45.22      | 83.13 | 54.64      | 0.04(Sr 3d)  | 0.14 (Sr 3d) |
| 21.03      | 51.08      | 78.53 | 46.67      | 0.44 (Ba 3d) | 2.25 (Ba 3d) |

**Table S1.** Atomic and Mass Concentration percentage of Pure ZnO and alkaline metal ions doped ZnO NPs for XPS spectra.

Table S2. The elemental composition of the synthesized ZnO NPs.

|        | At%   |       |                  |       |  |  |
|--------|-------|-------|------------------|-------|--|--|
| Sample | Zn    | 0     | Doping<br>amount | Total |  |  |
| ZnO    | 61.27 | 38.73 | -                | 100%  |  |  |
| ZnO:Mg | 61.79 | 34.61 | 3.6(Mg)          | 100%  |  |  |
| ZnO:Ca | 53.19 | 44.64 | 2.17(Ca)         | 100%  |  |  |
| ZnO:Sr | 51.79 | 46.9  | 1.31(Sr)         | 100%  |  |  |
| ZnO:Ba | 44.72 | 53.74 | 1.54(Ba)         | 100%  |  |  |



**Figure S5**. EDAX spectra of (a) Pure ZnO, (b) ZnO:Mg, (c) ZnO:Ca, (d) ZnO:Sr and (e) ZnO:Ba NPs.









photoluminescence emission spectra of (a)

Pure ZnO, (b) ZnO:Mg, (c) ZnO:Ca, (d)

ZnO:Sr and (e) ZnO:Ba NPs.