Supporting information

Conferring the adhesion layer with mineralization-inducing

capability for preparing organic-inorganic hybrid microcapsules

Wenyan Zhang,^{*a*} Jiafu Shi,^{*b,c*} Xiaoli Wang,^{*a*} Zhongyi Jiang^{*},^{*a,b*} Xiaokai Song,^{*a*}

Qinghong Ai, ^a

^a Key Laboratory for Green Chemical Technology of Ministry of Education, School of

Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.

^b Collaborative Innovation Center of Chemical Science and Engineering (Tianjin),

Tianjin 300072, China.

^c School of Environment Science and Engineering, Tianjin University, Tianjin 300072, China.

*To whom correspondence should be addressed. Tel: 86-22-27406646; Fax: 86-22-23500086; E-mail: zhyjiang@tju.edu.cn

Experimental details

Thermal denaturation kinetic

The thermal denaturation constants (k_d) were calculated from the first order exponential approach Eq. 1:

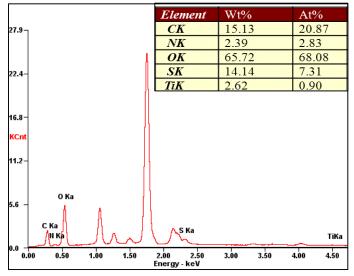
$$A_{cat} / A_{cat,0} = \exp(-k_d t)$$
(1)

where $A_{cat,0}$ was the CAT activity before incubation, A_{cat} was the CAT activity after incubation at a certain temperature for a certain time and *t* was the incubation time. The half-life $(t_{1/2})$ value for CAT thermal denaturation was determined from Eq. 2:

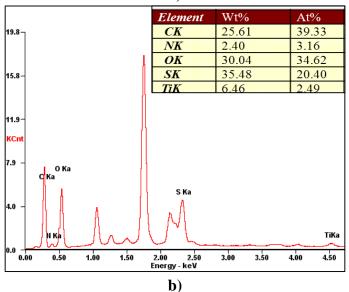
$$t_{1/2} = \frac{ln2}{k_d} \tag{2}$$

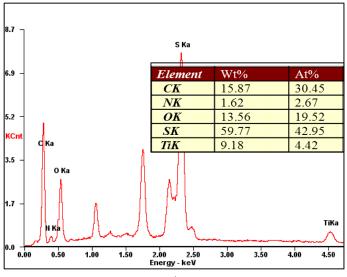
The activation energy (E_d) for CAT thermal denaturation was determined by applying the Arrhenius equation Eq. 3:

$$lnk_d = -E_d/R + lnC \tag{3}$$


The E_d was calculated by the plot of log denaturation rate constants (lnk_d) versus reciprocal of the absolute temperature (T) from Eq. 4:

$$Slope = E_d / R$$
 4)


The change in enthalpy (ΔH^0 kJ mol⁻¹) for CAT thermal denaturation was determined using the Eq. 5:


$$\Delta H^0 = E_d - RT \tag{5}$$

where *R* was the gas constant (8.3145 J mol⁻¹ K⁻¹) and *T* was the corresponding absolute temperature.

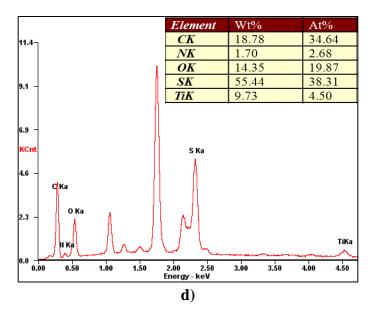


Fig. S1. EDS of the PDA/cysteamine/Ti microcapsules prepared with different concentration of cysteamine (a) 2 mg mL⁻¹ (b) 8 mg mL⁻¹ (c) 16 mg mL⁻¹ (d) 24 mg mL⁻¹.

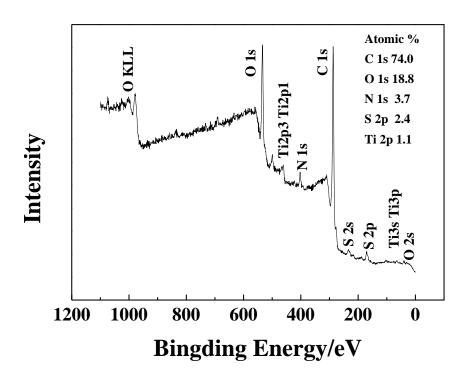


Fig. S2 XPS spectra of the PDA/cysteamine/Ti microcapsules

X-ray photoelectron spectroscopy (XPS) was utilized to further confirm the existence of cysteamine in the PDA/cysteamine/Ti microcapsules. There were C, O and N elements in the XPS survey spectrum of the pure PDA microcapsules.¹ As shown in Fig. S2, there were C, O, N, S and Ti elements in the XPS survey spectrum of PDA/cysteamine/Ti microcapsules. The S element should be originated from cysteamine.

References

- 1. L. Zhang, J. Shi, Z. Jiang, Y. Jiang, S. Qiao, J. Li, R. Wang, R. Meng, Y. Zhu and
- Y, Zheng, Green Chem., 2011, 13, 300-306.