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Theoretical development of Time-Metal coordination superposition master curve

As a first attempt to model the rheological behavior of the different metal-crosslinked gels, the generalized linear

viscoelastic Maxwell model was used to fit the measured loss-tangent tan δ = G′′(ω)/G′(ω) from the small amplitude

oscillatory shear (SAOS) data. However, it was found that this fit was unsatisfactory, because of the inability of the

linear model to capture the power-law behavior exhibited by many gel-like materials, including the ones of interest

in our present study, without incorporating a very large number of relaxation modes. We therefore employ the

fractional Maxwell model, which can be most clearly interpreted in terms of a mechanical element commonly referred

to as a ‘springpot. Most viscoelastic constitutive models invoke mechanical analogs that employ a combination of

springs which obey Hooke’s law of elasticity (i.e. the stress in the element is directly proportional to the strain),

and dashpots which obey Newton’s law of viscosity (i.e. the stress in the element is directly proportional to the

strain rate). The springpot generalizes these elements by embodying a constitutive law in which the stress in the

element is directly proportional to the α-th order derivative of strain, where 0 < α < 1 [1], i.e.

σspringpot = V
dαγ(t)

dtα
(1)

Here V is a material property of the gel which is best thought of as a ‘quasi-property’ [2] with units Pa sα.

It is clear that we retrieve the familiar limits of a Hookean spring and a Newtonian dashpot when α = 0 and

α = 1, respectively, and figure S1(a) below shows these limits schematically. We may now construct constitutive

models using springpot elements analogous to models involving a combination of springs and dashpots. One such

constitutive model is the fractional Maxwell model, which consists of two springpot elements combined in series.

This model is shown schematically in 1(b) above and the constitutive equation for the fractional Maxwell model is

given by [3]

σ(t) +
V
G
dα−βσ(t)

dtα−β
= V

dαγ(t)

dtα
(2)
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Figure S1: Schematic diagrams showing the springpot (a) and its use in the fractional Maxwell model (b).

where we take α > β without loss of generality, and V (units of Pa sα) and G (units of Pa sβ) are the quasi-properties

of the two elements. We are interested in finding the expression for the loss-tangent tan δ = G′′(ω)/G′(ω) in this

model, so that we may fit the linear viscoelastic data measured for the gels and quantitatively describe the rheological

response of the gels in a compact way. If the gels synthesized from different metal ions are self-similar, we should

be able to collapse the linear viscoelasticity data obtained from all gels onto a master curve obtained by fitting the

fractional Maxwell model to the tan δ(ω) data for any gel. To find tan δ, we first Fourier transform the constitutive

equation (2) and rearrange to obtain

Γ∗(ω) =
V(iω)α ·G(iω)β

V(iω)α + G(iω)β
(3)

and we have

tan δ ≡ G′′

G′
=

Im(G∗)

Re(G∗)
=

Gωβ sin(πα/2) + Vωα sin(πβ/2)

Gωβ cos(πα/2) + Vωα cos(πβ/2)
(4)

To find the crossover frequency ωc, we solve equation (4) for the special condition when tan δ = 1 to obtain

ωc =

[
G
V

(
sin(πα/2)− cos(πα/2)

cos(πβ/2)− sin(πβ/2)

)]1/(α−β)
(5)

We now rewrite equation (4) in terms of the reduced frequency ωr = ω/ωc by combining equations (4) and (5):

tan δ =
(1− tan(πβ/2)) tan(πα/2) + ωα−βr (tan(πα/2)− 1) tan(πβ/2)

(1− tan(πβ/2)) + ωα−βr (tan(πα/2)− 1)
(6)

To generate Figure 3b in the main manuscript, we first fit the predicted loss tangent given by the fractional Maxwell

model (equation (4)) to the linear viscoelastic frequency sweep data of Al gels and find α = 0.982, β = 0.014,V =

406 Pa s0.982 and G = 2.3×104 Pa s0.014. With these values, the numerical value for the crossover frequency c,Al is

found from equation (5) to be ωc,Al = 64 rad s−1. We now re-plot the experimental data for the dimensionless loss

tangent of the Al gel versus the dimensionless reduced frequency ωr and overlay the curve obtained from equation

(6) using the values of α and β determined above. The tan δ(ω) data of the Fe gel and the V gel can be laterally
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shifted onto this same curve with shift factors that closely matches the value of ωc obtained for each metal gel by

directly fitting equation (4) to the corresponding data set (we find ωc,Fe = 16 rad s−1 and ωc,V = 1.1 rad s6−1). No

vertical shift of the data is required. This result supports the assertion that the solid line in Figure 3b (obtained

from equation (6) using values of α and β extracted from Al-gel data initially) is indeed a master curve. The

progressive deviation of the rheological data obtained with the Fe gel for ωr < 1 is a result of a small fraction

of covalent bonding of the Fe-gel (see supplementary Figure S2) that increases the elasticity of the gel (and thus

reduces the loss tangent). This is explained in more detail in the main text of the paper.

(a)

(b)

Figure S2: GPC data showing the PEG standards (top) and the results of mPEG-Cat reactions (bottom) with Fe(III),
Al (III) and V(III). A multimer peak ∼9.5min is increased with Fe(III) in support of Fe-induced covalent crosslinking. The
multimer appears to be a dimer but its exact chemistry is currently under investigation. See Analysis of metal-induced
covalent crosslinking protocol for experimental details.

One important consequence of the best fit values obtained for the material coefficients α and β (i.e. α ≈ 1, but

α 6= 1; and β ≈ 0 but β 6= 0) is the presence of the bounded upper and lower plateaus for tan that can be seen in

Figure 3b in the low frequency and high frequency limits, respectively. Equation (6) gives us that tan δ ≈ tan(πα/2)

for ωr � 1 and tan δ ≈ tan(πβ/2) for ωr � 1. If α is identical to unity, there would be no low frequency plateau

(i.e. the loss tangent diverges like a Newtonian fluid in the limit of low frequencies), and if β = 0 the loss tangent

would approach zero as expected for an ideal elastic solid response in the limit of high frequencies.

Analysis of metal-induced covalent crosslinking protocol

mPEG-Cat (see below) was synthesized as previously reported [4]. The molecular weight was characterized by

MALDI-TOF MS and found to be ∼ 5,600 g/mol. In order to replicate gel formation conditions as closely as

possible, the polymer endgroup was kept constant ((200 mg/mL) × (10,000 g/mol)−1 × (4 endgroups/polymer)

= 80 mM endgroup). Therefore to make an equivalent mPEG-Cat solution a final polymer concentration of 448
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mg/mL is needed (80 mM × 5,600 g/mol = 448 mg/mL). 100 mM stock solutions of FeCl3, VCl3, and AlCl3·6H2O

were freshly prepared. The metal: mPEG-Cat ratio was set to 1:3. Initially, 1.5 mL 100 mg/mL mPEG-Cat

solutions with 1:3 metal:mPEG-Cat were used to determine the amount of 1.00 M NaOH needed to be added to

raise the pH to 8 for each metal studied. In this case the gel condition was not replicated exactly in order to conserve

polymer. From these titration experiments, a volume of 1.00 M NaOH/ mass of mPEG-Cat could be determined for

each metal for GPC experiments. 10.0 mg mPEG-Cat aliquots (1.79 mol), which had been speedvaced to remove

water, were redissolved in water, as listed in the table below. 100 mM metal stock was then added. Then after 1

min, 1.00 M NaOH as listed in the table below was added, 30 min was allowed to pass, and then 978 L of GPC

buffer (100 mM NaSO4, 50 mM citrate, pH 3.5) was added and the sample was injected onto the GPC column

within 5 min. After addition of GPC buffer, samples were at 10 mg/mL for injection on the column. The control

mPEG-Cat solution was mPEG-Cat dissolved in the GPC buffer at 10 mg/mL. The GPC method employed was

identical to a method that has been previously published for separation of AgNO3 oxidized mPEG-Cat [5].

Figure S3: mPEG-Cat

Figure S4: The conditions of the three different mPEG-Cat-metal reactions.

Figure S5: Example of oscillatory shear data from the different metal-catechol crosslinked gels.
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