Supporting information

Efficient enrichment of glycopeptides using phenylboronic acid polymer brush modified silica microspheres

Xiuling Lia[§], Hongliang Liu^{b§}, Guangyan Qing^c, Shutao Wang^{*b}, Xinmiao Liang^{*a}

^a: Key Lab of separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese
Academy of Science, 457 Zhongshan Road, Dalian 116023, P.R. China. E-mail: liangxm@dicp.ac.cn
^b: Beijing National Laboratory of Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, NO.2, Zhongguancun North First Street, Beijng, 100190, P.R. China. Email: stwang@iccas.ac.cn
^c:State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China

§: These two authors contribute equally to this article.

1. Synthesis and characterization of monolayer PBA modified SiO₂

The azide modified silica gel was prepared according to the literature.^{1,2} monolayer PBA modified SiO₂ (PBA@SiO₂) was prepared over iron salt catalyzed Click Chemistry. Azide-modified silica gel (5 g) was suspended in DMF/MeOH (v/v, 9/1, 50 mL) solution of 4-cyanophenylboronic acid (4.5 g, 30.6 mmol). Then, ferrous acetate (0.15 g, 0.85 mmol) and sodium ascorbate (1.0 g, 5 mmol) were added in the solution. The solution was stirred under 80°C over 60 h, the obtained material was filtrated and washed with 0.1 mol/L EDTA aqueous solution (500 mL), water (1000 mL), and methanol (300 mL) respectively. The prepared materials were dried to constant weight and characterized with the elemental analysis results. The carbon content of PBA@SiO₂ was 4.5%.

Fig. S1 The N_2 adsorption curve (A) and pore size distribution curves (B) of polyPBA@SiO₂ and SiO₂.

Fig. S2 Thermo-gravimetric analysis (TGA) curves of polyPBA@SiO₂ and SiO₂.

Fig. S3 Nano-ESI-Q-TOF mass spectra of flowthrough from polyPBA@SiO₂ microcolumns after loading 10 μ L tryptic HRP digests with (A) 90% ACN/50 mM NH₄HCO₃, (B) 80% ACN/50 mM NH₄HCO₃, (C) 70% ACN/50 mM NH₄HCO₃ and (D) 50 mM NH₄HCO₃. Glycopeptides are labelled with *. The non-glycopeptides were labelled with their m/z values. Glycopeptides were strongly retained by 90% CAN/50 mM NH₄HCO₃ and 80% ACN/50 mM NH₄HCO₃ and were eluted with 70% ACN/50 mM NH₄HCO₃.

Fig. S4 Nano-ESI-Q-TOF mass spectra of HRP peptides not retained by polyPBA@SiO₂ when using different pH loading solutions. (A) 75% ACN/0.1% FA, (B) 75% ACN and (C) 75% ACN/50 mM NH₄HCO₃. Glycopeptides are labeled with *. The non-glycopeptides were labeled with their m/z values. Glycopeptides could be found when using 75% ACN in both neutral and acidic solution. On the contrary, the glycopeptides were well captured with 75% ACN in basic solution.

Fig. S5. Tandem mass spectra of identified HRP peptides enriched with polyPBA@SiO₂. Fragment ions of all detected HRP glycopeptides have at least three indicator oxonium ions including m/z 163 (Hex+), m/z 204 (HexNAc+) and m/z 366.

Fig. S6. Nano-ESI-Q-TOF mass spectra of HRP peptides in flowthrough fractions from PBA-agarose (A), polyPBA@SiO₂ (B), monolayer PBA@SiO₂ without incubation (C). Glycopeptides are labelled with *. The non-glycopeptides were labelled with their m/z values. PBA@SiO₂ and PBA-agarose showed strong affinity for peptides.

References

- 1. A. Shen, Z. Guo, L. Yu, L. Cao and X. Liang, Chem. Commun., 2011, 47, 4550.
- 2. L. Yu, X. Li, Z. Guo, X. Zhang and X. Liang, Chem. Eur. J, 2009, 15, 12618.