Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2014

## Surporting Information for the manuscript

Synthesis and Crystal Structure of Copper(II) Complex of Curcumin-

type and Application for in Vivo Early Tumor Imaging

Guoyong Xu<sup>a</sup>, Jiafeng Wang<sup>b</sup>, Tao Liu<sup>b</sup>, Mahong Wang<sup>a</sup>, Shuangsheng <sup>\*</sup>Zhou<sup>abc</sup>, Baoxing Wu<sup>bc</sup>, Minghua Jiang<sup>c</sup>

<sup>a</sup>Center of Modern Experimental Technology, Anhui University, Hefei 230039, P. R.China
<sup>b</sup> Department of Pharmacy, Anhui College of Chinese Medicine, Hefei 230038, PR China
<sup>c</sup> State Key Laboratory of Crystal Materials, Shandong University, Jinan 502100, PR China

| Part 1. Structure Characterizitions of the compounds    2                                        |
|--------------------------------------------------------------------------------------------------|
| <b>Fig. S1.</b> MS specta of HL                                                                  |
| Fig. S2. Crystal Structure Determination of HL    3                                              |
| Fig. S3. (a) The ORTEP structure of $CuL_2 \cdot C_4H_8O_2(50\%$ thermal ellipsoid probability). |
| (b) View showing the 1D columnar arrangement stabilized by $\pi$ - $\pi$ interactions of Cu(II)  |
| Complex. (c) View showing the 3D supramolecular structure of the Cu(II) Complex.                 |
|                                                                                                  |
| Table S1. Crystal data and structure refinement parameters for HL and CuL_2 $\cdot$ C_4H_8O_2    |
|                                                                                                  |
| <b>Table S2.</b> Selected bond lengths [Å] and angles [°] for HL                                 |
| <b>Table S3.</b> Selected bond lengths [Å] and angles [°] for $CuL_2 \cdot C_4H_8O_2$            |
| Part 3                                                                                           |
| Fig. S4. Linear absorption spectra of HL and $CuL_2 \cdot C_4H_8O_2$ in several solvents         |
| with differing Polarity                                                                          |
| Fig. S5. SPEF spectra of of HL and $CuL_2 \cdot C_4H_8O_2$ in several solvents with differing    |
| Polarity. 10                                                                                     |
| Fig. S6 cytotoxicity data results of obtained compounds against MCF-7 cell line                  |
|                                                                                                  |

## Part 1 Structure Characterizitions of the compounds



**Crystal Structure Determinations**: The molecular structures of HL and  $CuL_2 \cdot C_4H_8O_2$  were shown in Fig. S2-S3. The unit cell, data collection and refinement parameters are located in the following Table S1, Tables S2 and S3 shows selected bond lengths and angles of HL and  $CuL_2 \cdot C_4H_8O_2$ .

1. Crystal Structure of HL:

In the molecular structure of **HL**, the least-square plane calculation shows that the dihedral angle between the two benzene rings is 8.2, indicating that they are nearly coplanar. The sum of the three C-C-C bond angles is  $359.9^{\circ}$ , which take carbon atom(C5) as center (C6-C5-C7,  $118.7(3)^{\circ}$ ; C6-C5-C4,  $118.5(3)^{\circ}$ ; C4-C5-C7,  $122.7(3)^{\circ}$ ). This result demonstrates that the carbon atom (C7) is practically coplanar with the benzene ring. Furthermore, it can be seen from Table 2 that all the bond lengths of C-C are located between the normal C=C double bond (1.32 Å) and C-C single bond (1.53 Å ), which demonstrates that it is a  $\pi$ -electron highly delocalized system for **HL**.



Fig. S2. The ORTEP structure of HL (50% thermal ellipsoid probability)

2. Crystal Structure of  $CuL_2 \cdot C_4H_8O_2$ : In Figure S3b, an infinite 1D columnar arrangement along caxis has been found, which was stabilized by the two  $\pi$ - $\pi$  interactions with the short distances of 3.897 and 3.846 Å to form the 1D structure. The 1D columns are linked each other through the same  $\pi$ - $\pi$ stacking interactions to form a 3D framework(Figure S3c).







a



**Fig. S3**. (a) ORTEP structure of Cu(II) complex with atomic labeling scheme (with 50% thermal ellipsoid probability), all hydrogen atoms are omitted for clarity. (b) View showing the 1D columnar arrangement stabilized by  $\pi$ - $\pi$  interactions. (c) View showing the 3D supramolecular structure of the Cu(II) Complex.

| Entry                                          | HL                  | $CuL_2 \cdot C_4H_8O_2$ |
|------------------------------------------------|---------------------|-------------------------|
| CCDC                                           | 896630              | 991272                  |
| Formula                                        | $C_{25}H_{28}O_{6}$ | $C_{54}H_{62}CuO_{14}$  |
| Weight                                         | 424.47              | 998.58                  |
| T[K]                                           | 298(2)              | 296(2)                  |
| $\lambda$ (Mo-K $\alpha$ )[Å]                  | 0.71069             | 0.71069                 |
| Crystal system                                 | Monoclinic          | Monoclinic              |
| Spaceg group                                   | P2(1)/n             | P2(1)/c                 |
| a[Å]                                           | 22.689(5)           | 21.86(2)                |
| b[Å]                                           | 4.913(5)            | 16.453(16)              |
| c[Å]                                           | 23.224(5)           | 7.184(7)                |
| β[°]                                           | 115.744(5)          | 97.643(11)              |
| Volume[Å <sup>3</sup> ]                        | 2332(2)             | 2561(4)                 |
| Z                                              | 4                   | 2                       |
| D(calc)[g/cm <sup>3</sup> ]                    | 1.209               | 1.295                   |
| μ[mm <sup>-1</sup> ]                           | 0.086               | 0.492                   |
| F(000)                                         | 904                 | 1054                    |
| Range(°)                                       | 1.05-25.00          | 0.94-25.00              |
|                                                | -26≦h≦26            | -25≦h≦25                |
| Index range                                    | -5≦k≦5              | -18≦k≦19                |
|                                                | -27≦l≦27            | -8≦l≦8                  |
| Reflections/unique                             | 15081/4099          | 17861/4510              |
| R(int)                                         | 0.0461              | 0.0247                  |
| Data/restraints/                               | 40996 / 0 / 285     | 4510/0/317              |
| parameters                                     |                     |                         |
|                                                | <b>D1</b> 0.0404    | D1 0.0502               |
|                                                | R1 = 0.0484,        | R1 = 0.0503,            |
| $\begin{bmatrix} I > 2\sigma(I) \end{bmatrix}$ | wR2 = 0.1134        | wR2 = 0.1420            |
| R indices (all data)                           | R1 = 0.1144,        | R1 = 0.0629             |
|                                                | wR2 = 0.1582        | wR2 = 0.1557            |
| GOF on F <sup>2</sup>                          | 0.993               | 1.095                   |
| Completeness to theta =                        | 100%                | 99.9%                   |
| 25.00                                          | 10070               | JJ.J / U                |

Table S1. Crystal data and structure refinement parameters for HL and  $CuL_2 \cdot C_4H_8O_2$ 

| Bond Length |          |
|-------------|----------|
| С5-С7       | 1.471(4) |
| C7-C8       | 1.320(4) |
| C8-C9       | 1.475(4) |
| O3-C9       | 1.304(4) |
| C9-C10      | 1.386(4) |
| C10-C11     | 1.404(4) |
| O4-C11      | 1.301(3) |
| C11-C12     | 1.449(4) |
| C12-C13     | 1.338(4) |
| C13-C14     | 1.457(4) |
| Bond Angle  |          |
| C6-C5-C4    | 118.5(3) |
| C6-C5-C7    | 118.7(3) |
| C4-C5-C7    | 122.7(3) |
| C19-C14-C15 | 117.6(2) |
| C19-C14-C13 | 120.0(2) |
| C15-C14-C13 | 122.3(2) |

 Table S2. Selected bond lengths [Å] and angles [°] for HL

| Bond Length |            |  |
|-------------|------------|--|
| Cu1 O3      | 1.9031(18) |  |
| Cul O4      | 1.9282(18) |  |
| O3 C9       | 1.283(3)   |  |
| O4 C11      | 1.278(3)   |  |
| C5 C7       | 1.465(3)   |  |
| C7 C8       | 1.337(4)   |  |
| C9 C8       | 1.474(3)   |  |
| C10 C9      | 1.402(4)   |  |
| C11 C10     | 1.410(3)   |  |
| C11 C12     | 1.474(3)   |  |
| C12 C13     | 1.337(3)   |  |
| C14 C13     | 1.468(3)   |  |
| Bond Angle  |            |  |
| O3 Cu1 O4   | 93.57(8)   |  |
| C11 O4 Cu1  | 126.15(16) |  |
| C9 O3 Cu1   | 126.89(16) |  |
| C4 C5 C6    | 117.8(2)   |  |
| C4 C5 C7    | 123.6(2)   |  |
| C6 C5 C7    | 118.6(2)   |  |
| O4 C11 C10  | 124.2(2)   |  |
| O4 C11 C12  | 117.0(2)   |  |
| O3 C9 C10   | 124.1(2)   |  |
| O3 C9 C8    | 115.9(2)   |  |
| C10 C9 C8   | 120.0(2)   |  |
| C9 C10 C11  | 125.0(3)   |  |
| C15 C14 C13 | 122.4(2)   |  |
| C19 C14 C13 | 119.8(3)   |  |
| C19 C14 C15 | 117.8(2)   |  |
|             |            |  |

Table S3. Selected bond lengths [Å] and angles [°] for  $CuL_2 \cdot C_4H_8O_2$ 

Part 3



Figure S4. Linear absorption spectra of HL and CuL<sub>2</sub> in several solvents with differing Polarity





Figure S5. SPEF spectra of of HL and CuL<sub>2</sub> in several solvents with differing Polarity.

## TPA cross-section σ:

The TPA cross-section  $\sigma$  was measured by comparing the TPEF intensity of the sample with that of a reference compound by the following Equations S1 and S2:

$$\Phi_{s} = \Phi_{r} \left( \frac{A_{r}(\lambda_{r})}{A_{s}(\lambda_{s})} \right) \left( \frac{I(\lambda_{r})}{I(\lambda_{s})} \right) \left( \frac{n_{s}^{2}}{n_{r}^{2}} \right) \frac{\int F_{s}}{\int F_{r}}$$

$$\sigma_{s} = \sigma_{r} F \Phi_{r} c_{r} n_{r} / F_{r} \Phi_{s} c n_{s}$$
(S1)
(S2)

$$\sigma_{\rm S} = \sigma_{\rm r} \, {\rm F} \Phi_{\rm r} \, c_{\rm r} \, n_{\rm r} / \, {\rm F}_{\rm r} \Phi_{\rm S} \, c \, n_{\rm s}$$

Here, n is the refractive index,  $I(\lambda)$  is the relative intensity of the exciting light,  $A(\lambda)$  is the absorbance of the solution at the exciting wavelength  $\lambda$ ,  $\Phi$  is the quantum yield, c is the concentration of the solution in mol/L and F is the integrated area under the corrected emission spectrum, subscripts s and r denote the sample and reference solutions, respectively. The  $\sigma_r$  value of reference was taken from t the RhB ethanol solution( $\Phi_r = 0.69$ ,  $c = 1 \times 10^{-6}$  mol/ L). The experimental errors are estimated to be  $\pm 10\%$  from sample concentrations and instruments.

**Cytotoxicity assay:** 





**Figure S6**. cytotoxicity data results of obtained compounds against MCF-7 cell line(24 h) from the MTT assay.