Surporting Information for the manuscript

Synthesis and Crystal Structure of Copper(II) Complex of Curcumin-
type and Application for in Vivo Early Tumor Imaging
Guoyong Xu^{a}, Jiafeng Wang ${ }^{\mathrm{b}}$, Tao Liu ${ }^{\mathrm{b}}$, Mahong Wang ${ }^{\mathrm{a}}$,Shuangsheng *Zhou ${ }^{\text {abc }}$, Baoxing Wu ${ }^{\text {bc }}$, Minghua Jiang ${ }^{\text {c }}$${ }^{\text {a }}$ Center of Modern Experimental Technology, Anhui University, Hefei 230039, P. R.China${ }^{\mathrm{b}}$ Department of Pharmacy, Anhui College of Chinese Medicine, Hefei 230038, PR Chinac State Key Laboratory of Crystal Materials, Shandong University, Jinan 502100, PR China
Part 1. Structure Characterizitions of the compounds 2
Fig. S1. MS specta of HL 2
Fig. S2. Crystal Structure Determination of HL 3
Fig. S3. (a) The ORTEP structure of $\mathrm{CuL}_{2} \cdot \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}(50 \%$ thermal ellipsoid probability $)$.
(b) View showing the 1 D columnar arrangement stabilized by $\pi-\pi$ interactions of Cu (II)
Complex. (c) View showing the 3D supramolecular structure of the $\mathrm{Cu}(\mathrm{II})$ Complex.4
Table S1. Crystal data and structure refinement parameters for HL and $\mathrm{CuL}_{2} \cdot \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$6
Table S2. Selected bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for HL 7
Table S3. Selected bond lengths $\left[\AA\right.$] and angles [${ }^{\circ}$] for $\mathrm{CuL}_{2} \cdot \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$ 8
Part 3 9
Fig. S4. Linear absorption spectra of HL and $\mathrm{CuL}_{2} \cdot \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$ in several solvents with differing Polarity. 9
Fig. S5. SPEF spectra of of HL and $\mathrm{CuL}_{2} \cdot \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$ in several solvents with differing Polarity. 10
Fig. S6 cytotoxicity data results of obtained compounds against MCF-7 cell line

Part 1 Structure Characterizitions of the compounds

Fig.S1. MS specta of HL

Crystal Structure Determinations: The molecular structures of HL and $\mathrm{CuL}_{2} \cdot \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$ were shown in Fig. S2-S3. The unit cell, data collection and refinement parameters are located in the following Table S1, Tables S2 and S3 shows selected bond lengths and angles of HL and $\mathrm{CuL}_{2} \cdot \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$.

1. Crystal Structure of HL:

In the molecular structure of $\mathbf{H L}$, the least-square plane calculation shows that the dihedral angle between the two benzene rings is 8.2 , indicating that they are nearly coplanar. The sum of the three $\mathrm{C}-\mathrm{C}-$ C bond angles is 359.9°, which take carbon atom(C5) as center (C6-C5-C7, 118.7(3) ; C6-C5-C4, $118.5(3)^{\circ}$; C4-C5-C7, 122.7(3) ${ }^{\circ}$. This result demonstrates that the carbon atom (C7) is practically coplanar with the benzene ring. Furthermore, it can be seen from Table 2 that all the bond lengths of C-C are located between the normal $\mathrm{C}=\mathrm{C}$ double bond $(1.32 \AA)$ and $\mathrm{C}-\mathrm{C}$ single bond ($1.53 \AA$), which demonstrates that it is a π-electron highly delocalized system for $\mathbf{H L}$.

Fig. S2. The ORTEP structure of HL (50\% thermal ellipsoid probability)
2. Crystal Structure of $\mathbf{C u L}_{2} \cdot \mathbf{C}_{\mathbf{4}} \mathbf{H}_{\mathbf{8}} \mathbf{O}_{\mathbf{2}}$: In Figure S3b, an infinite 1 D columnar arrangement along caxis has been found, which was stabilized by the two $\pi-\pi$ interactions with the short distances of 3.897 and $3.846 \AA$ to form the 1 D structure. The 1D columns are linked each other through the same $\pi-\pi$ stacking interactions to form a 3D framework(Figure S3c).
a

b

Fig. S3. (a) ORTEP structure of $\mathrm{Cu}(\mathrm{II})$ complex with atomic labeling scheme (with 50% thermal ellipsoid probability), all hydrogen atoms are omitted for clarity. (b) View showing the 1D columnar arrangement stabilized by π - π interactions. (c) View showing the 3D supramolecular structure of the $\mathrm{Cu}(\mathrm{II}) \mathrm{Complex}$.

Table S1. Crystal data and structure refinement parameters for $\mathbf{H L}$ and $\mathrm{CuL}_{\mathbf{2}} \cdot \mathbf{C}_{\mathbf{4}} \mathbf{H}_{\mathbf{8}} \mathrm{O}_{\mathbf{2}}$

Entry	HL	$\mathrm{CuL}_{2} \cdot \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$
CCDC	896630	991272
Formula	$\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{O}_{6}$	$\mathrm{C}_{54} \mathrm{H}_{62} \mathrm{CuO}_{14}$
Weight	424.47	998.58
$\mathrm{~T}[\mathrm{~K}]$	$298(2)$	$296(2)$
$\lambda($ Mo-K $\alpha)[\AA]$	0.71069	0.71069
Crystal system	Monoclinic	Monoclinic
Spaceg group	$\mathrm{P} 2(1) / \mathrm{n}$	$\mathrm{P} 2(1) / \mathrm{c}$
$\mathrm{a}[\AA]$	$22.689(5)$	$21.86(2)$
$\mathrm{b}[\AA]$	$4.913(5)$	$16.453(16)$
$\mathrm{c}[\AA]$	$23.224(5)$	$7.184(7)$
$\beta\left[\left[^{\circ}\right]\right.$	$115.744(5)$	$97.643(11)$
Volume $\left[\AA^{3}\right]$	$2332(2)$	$2561(4)$
Z	4	2
$\mathrm{D}($ calc) $)\left[\mathrm{g} / \mathrm{cm} \mathrm{c}^{3}\right]$	1.209	1.295
$\mu[$ mm		
$\mathrm{F}(000)$	0.086	0.492
Range $\left.{ }^{\circ}{ }^{\circ}\right)$	904	1054
	$1.05-25.00$	$0.94-25.00$
Index range	$-26 \leqq \mathrm{~h} \leqq 26$	$-25 \leqq \mathrm{~h} \leqq 25$
	$-5 \leqq \mathrm{k} \leqq 5$	$-18 \leqq \mathrm{k} \leqq 19$
Reflections/unique	$-27 \leqq 1 \leqq 27$	$-8 \leqq 1 \leqq 8$
$\mathrm{R}($ int $)$	$15081 / 4099$	$17861 / 4510$
Data/restraints/	0.0461	0.0247
parameters	$40996 / 0 / 285$	$4510 / 0 / 317$

Final $\quad \mathrm{R} \quad$ indices	$\mathrm{R} 1=0.0484$,	$\mathrm{R} 1=0.0503$,
$[\mathrm{I}>2 \sigma(\mathrm{I})]$	$\mathrm{wR} 2=0.1134$	$\mathrm{wR} 2=0.1420$
R indices (all data)	$\mathrm{R} 1=0.1144$,	$\mathrm{R} 1=0.0629$
	wR2 $=0.1582$	wR2 $=0.1557$

GOF on F^{2}	0.993	1.095
Completeness to theta $=$	100%	99.9%
25.00		

Table S2. Selected bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for $\mathbf{H L}$

Bond Length	
$\mathrm{C} 5-\mathrm{C} 7$	$1.471(4)$
$\mathrm{C} 7-\mathrm{C} 8$	$1.320(4)$
$\mathrm{C} 8-\mathrm{C} 9$	$1.475(4)$
$\mathrm{O} 3-\mathrm{C} 9$	$1.304(4)$
$\mathrm{C} 9-\mathrm{C} 10$	$1.386(4)$
$\mathrm{C} 10-\mathrm{C} 11$	$1.404(4)$
$\mathrm{O} 4-\mathrm{C} 11$	$1.301(3)$
$\mathrm{C} 11-\mathrm{C} 12$	$1.449(4)$
$\mathrm{C} 12-\mathrm{C} 13$	$1.338(4)$
$\mathrm{C} 13-\mathrm{C} 14$	$1.457(4)$
Bond Angle	$118.5(3)$
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 4$	$118.7(3)$
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 7$	$122.7(3)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 7$	$117.6(2)$
$\mathrm{C} 19-\mathrm{C} 14-\mathrm{C} 15$	$120.0(2)$
$\mathrm{C} 19-\mathrm{C} 14-\mathrm{C} 13$	$122.3(2)$
$\mathrm{C} 15-\mathrm{C} 14-\mathrm{C} 13$	

Table S3. Selected bond lengths $[\AA]$ and angles $\left[^{\circ}\right]$ for $\mathbf{C u L}_{\mathbf{2}} \cdot \mathbf{C}_{\mathbf{4}} \mathbf{H}_{\mathbf{8}} \mathbf{O}_{\mathbf{2}}$

Bond Length	
Cu1 O3	$1.9031(18)$
Cu1 O4	$1.9282(18)$
O3 C9	$1.283(3)$
O4 C11	$1.278(3)$
C5 C7	$1.465(3)$
C7 C8	$1.337(4)$
C9 C8	$1.474(3)$
C10 C9	$1.402(4)$
C11 C10	$1.410(3)$
C11 C12	$1.474(3)$
C12 C13	$1.337(3)$
C14 C13	$1.468(3)$
Bond Angle	
O3 Cu1 O4	$93.57(8)$
C11 O4 Cu1	$126.15(16)$
C9 O3 Cu1	$126.89(16)$
C4 C5 C6	$117.8(2)$
C4 C5 C7	$123.6(2)$
C6 C5 C7	$118.6(2)$
O4 C11 C10	$124.2(2)$
O4 C11 C12	$117.0(2)$
O3 C9 C10	$124.1(2)$
O3 C9 C8	$115.9(2)$
C10 C9 C8	$120.0(2)$
C9 C10 C11	$125.0(3)$
C15 C14 C13	$122.4(2)$
C19 C14 C13	$119.8(3)$
C19 C14 C15	$117.8(2)$

Part 3

Figure S4. Linear absorption spectra of HL and CuL_{2} in several solvents with differing Polarity

Figure S5. SPEF spectra of of HL and CuL_{2} in several solvents with differing Polarity.

TPA cross-section σ :

The TPA cross-section σ was measured by comparing the TPEF intensity of the sample with that of a reference compound by the following Equations S1 and S2:

$$
\begin{align*}
& \Phi_{S}=\Phi_{r}\left(\frac{A_{r}\left(\lambda_{r}\right)}{A_{s}\left(\lambda_{s}\right)}\right)\left(\frac{I\left(\lambda_{r}\right)}{I\left(\lambda_{s}\right)}\right)\left(\frac{n_{s}^{2}}{n_{r}^{2}}\right) \frac{\int F_{s}}{\int F_{r}} \tag{S1}\\
& \sigma_{s}=\sigma_{\mathrm{r}} \mathrm{~F} \Phi_{\mathrm{r}} \mathrm{c}_{\mathrm{r}} \mathrm{n}_{\mathrm{r}} / \mathrm{F}_{\mathrm{r}} \Phi_{\mathrm{sc}} \mathrm{n}_{\mathrm{s}} \tag{S2}
\end{align*}
$$

Here, n is the refractive index, $\mathrm{I}(\lambda)$ is the relative intensity of the exciting light, $\mathrm{A}(\lambda)$ is the absorbance of the solution at the exciting wavelength λ, Φ is the quantum yield, c is the concentration of the solution in $\mathrm{mol} / \mathrm{L}$ and F is the integrated area under the corrected emission spectrum, subscripts s and r denote the sample and reference solutions, respectively. The σ_{r} value of reference was taken from t the RhB ethanol solution $\left(\Phi_{\mathrm{r}}=0.69, \mathrm{c}=1 \times 10^{-6} \mathrm{~mol} / \mathrm{L}\right)$. The experimental errors are estimated to be $\pm 10 \%$ from sample concentrations and instruments.

Cytotoxicity assay:

Figure S6. cytotoxicity data results of obtained compounds against MCF-7 cell line(24 h) from the MTT assay.

