SUPPORTING INFORMATION

Designed Peptides for Biomineral Polymorph Recognition: A Case Study for Calcium Carbonate

Timo Schüler¹, Jochen Renkel¹, Stephan Hobe², Moritz Susewind¹,

Dorrit E. Jacob³, Martin Panthöfer¹, Anja Hoffmann-Röder⁴, Harald

Paulsen², Wolfgang Tremel^{1*}

- ¹ Institut für Anorganische Chemie und Analytische Chemie, Johannes Gutenberg Universität, Duesbergweg 10-14, D-55099 Mainz (Germany)
- ² Institut Institut f
 ür Allgemeine Botanik, Johannes Gutenberg Universit
 ät, M
 üllerweg 6,
 D-55099 Mainz (Germany)
- ³ Institut f
 ür Geowissenschaften, Johannes Gutenberg-Universit
 ät, J.-J.-Becher-Weg 21,
 D-55099 Mainz (Germany)
- ⁴ Department Chemie, Ludwig- Maximilians-Universität München, Butenandtstr. 5-13, D 81377 München (Germany)
- * e-mail: tremel@uni-mainz.de

Table S1. Selected sequences of peptides obtained from phage display selectiuon against vaterite. Characteristic for nearly all peptides is the presence of proline (black) and arginine (red). ^aFound in 80% of the sodium acetate selected phage clones in round 3. ^bFound in 70% of the EDTA selected phage clones in round 3. ^cPeptides synthesized by solid state peptide synthesis (SPPS).

Clone^{a}	Selection round	Elution method	Sequence
Pep1	First	pH 2.2	TTD RP KY
Pep2	First	pH 2.2	SVPQ R T P
Pep3	First	pH 2.2	VQT P A R M ^e
Pep4	Second	pH 2.2	QPPRSTS
Pep5	Second	pH 2.2	VQTSSSY
Pep6	Second	pH 2.2	RCAPPCN
Pep7	Third	NaAc	HAPARVP
Pep8	Third	NaAc	$\mathrm{ASTQ}\mathbf{PL}\mathbf{R}^{a,c}$
Pep9	Third	EDTA	EAPVRYF
Pep10	Third	EDTA	$\operatorname{ATN}\mathbf{P}\operatorname{TDY}^{b,c}$
Pep11	Third	EDTA	AIT R SPA
Pep12	Third	EDTA	HAIY P RH
Pep13	Third	EDTA	$\mathrm{TSFTW}\mathbf{PR}$

-	Pep8	gPep8	
Diffractometer	Bruker D8 Discover, HiStar detector		
Measuring mode	Bragg-Brentano		
Wavelength	CuKα		
Measuring range	$13.7 \le 2\Theta /^{\circ} \le 80.22, \Delta 2\Theta /^{\circ} = 0.02; 0.97 \le Q/Å^{-1} \le 5.25$		
	Integration from (RJP) frames at individual scattering angles		
Temperature /K	298		
Profile Fit	Rietveld refinement according to reported crystal structure models		
Background / Parameters	Chebyshev / 42	Chebyshev / 18	
Profile function	Fundamental Parameters Approach		
Program	TOPAS Academic V4.1		
Total No. of Parameters	54	24	
R _{wp}	3.2	5.0	
GoF	0.37	0.68	
Phase I	Calcite	Calcite	
Space group	<i>R</i> -3 <i>c</i>	<i>R</i> -3 <i>c</i>	
Cell parameters /Å	a = 4.9(2)	a = 4.984(1)	
	c = 17.062(9)	c = 17.0275(6)	
Crystallite size / nm	20(3)	68(1)	
Fraction /%wt	2(3)	100(0)	
Biso	Ca: 1, C, O: 1.5	Ca: 1, C, O: 1.5	
Preferred Orientation	(002) / 0.18(8)	(002) / 0.232(2)	
(March-Dollse)			
Phase II	Vaterite, 6 layer model	_/_	
Space group	<i>C</i> -1		
Cell parameters /Å	a = 12.38(4)		
	b=7.15(2)		
	c = 25.76(2)		
	$\beta = 99.3(2)^{\circ}$		
Crystallite size / nm	37(1)		
Fraction /%wt	98(3)		
Biso	Ca: 1, C, O: 1.5		

Table S2. Details of the measurement and refinement of the X-ray diffraction data for the crystallization of CaCO₃ with Pep8 and gPep8.

	Pristine	After incubation	
Diffractometer	Bruker D8 Discover, HiStar detector		
Measuring mode	Bragg-Brentano		
Wavelength	CuKa		
Measuring range	$6.7 \le 2\Theta /^{\circ} \le 85.86, \Delta 2\Theta /^{\circ} = 0.02; 0.0477 \le Q/Å^{-1} \le 5.55$		
	Integration from (RJP) frames at individual scattering angles		
Temperature /K	298		
Profile Fit	Rietveld refinement according to reported crystal structure models		
Background / Parameters	Chebyshev / 20		
Profile function	Fundamental Parameters Approach		
Program	TOPAS Academic V4.1		
Total No. of Parameters	26	32	
R _{wp}	8.2	4.1	
GoF	0.69	0.51	
Phase I	Calcite	Calcite	
Space group	<i>R</i> -3 <i>c</i>	<i>R</i> -3 <i>c</i>	
Cell parameters /Å	a = 4.9902(2)	a = 5.000(4)	
	c = 17.0674(9)	c = 17.01(1)	
Crystallite size / nm	71.5(5)	53(1)	
Fraction /%wt	100%	0.9(1)	
Biso	Ca: 1, C, O: 1.5	Ca: 1, C, O: 1.5	
Phase II	_/_	Vaterite, 6 layer model	
Space group		<i>C</i> -1	
Cell parameters /Å		a = 12.418(1)	
		b= 7.1355(6)	
		c = 25.766(1)	
		$\beta = 99.55(1)^{\circ}$	
Crystallite size / nm		40(1)	
Fraction /%wt		99.1(1)	
Biso		Ca: 1, C, O: 1.5	

Table S3. Details of the measurement and refinement of the X-ray diffraction data for the incubation of vaterite nanocrystals with Pep8 and gPep8

Fig. S1. Transmission electron microscopy images of vaterite nanoparticles used for the phage display.

Fig. S2. XRD diffraction pattern of a bulk sample of calcium carbonate crystallized in the presence of Pep8 (bottom trace) and gPep8 (top trace). Crystallization in the presence of Pep8 lead to the formation of vaterite, whereas gPep8 induced the formation of calcite. Red dots: observed, black line: calculated, red line: difference, black ticks mark the reflection positions of the constituent phases.

Fig. S3. XRD diffraction pattern of a bulk sample of vaterite nanoparticles incubated at ambient temperature with Pep8 (bottom trace) and gPep8 (top trace). Incubation with gPep8 triggered a phase transition from vaterite to calcite, whereas vaterite remained stable in the presence of Pep8. Red dots: observed, black line: calculated, red line: difference, black ticks mark the reflection positions of the constituent phases.

Figure S4. Raman spectra of calcium carbonate precipitated in the presence of $1 \text{ mg} \cdot \text{mL}^{-1}$ Pep8 (a) and gPep8 (b).

Peptide Analysis

L-Valyl-L-glutamyl-L-threonyl-L-prolyl-L-alanyl-L-arginyl-L-methionylamide (Pep3)

417 mg (0.1 mmol, loading: 0.24 mmol/g) of Fmoc-L-Met-RAM-Tentagel-S resin were used in the synthesis as described above to yield 84 mg of crude peptide. The crude peptide was purified by semi-preparative HPLC (R_t = 21.9 min, JUPITER, methanol/water, grad. (5:95) \rightarrow (20:80), 20 min; 5 min constant; λ = 214 nm) to yield 49 mg (61 μ mol, 61%) as a colourless, amorphous solid. Analytical HPLC: $R_t = 13.8$ min (JUPITER, methanol/water, grad. (5:95) \rightarrow (20:80), 20 min; \rightarrow (100:0), 10 min; $\lambda = 214$ nm); $[\alpha]_D^{23}$ (MeOH/H₂O (1:1), c =1.04) = -65.88 °; *ESI-MS* (positive ion mode) m/z: 401.22 ([M+2H]²⁺, calcd.: 401.23); 801.41 ([M+H]⁺, calcd.: 801.44); HR-ESI-MS (positive ion mode) m/z: calcd. for C₃₃H₆₁N₁₂O₉S: 801.4405, found: 801.4377 [M+H]⁺; ¹H-*NMR* (400 MHz, DMSO, ¹*H*, *COSY*, *TOCSY*), δ (ppm) = 8.59 (d, $J_{ONH,O\alpha}$ = 7.4 Hz, 1H, Q^{NH}); 8.23 (d, $J_{ANH,A\alpha}$ = 6.0 Hz, 1H, A^{NH}); 8.11 (d, *J*_{TNH,Ta} = 7.0 Hz, 1H, T^{NH}); 7.98 (d, *J*_{RNH,Ra} = 6.8 Hz, 1H, R^{NH}); 7.92-7.83 (m, 2H, M^{NH}) {7.89}, R^{enh} {7.87}); 7.33 (s, 1H, Q^{8CONH2a}); 7.30 (s, 1H, M^{CONH2a}); 7.11 (s, 1H, M^{CONH2b}); 6.82 (s, 1H, $Q^{\delta CONH2b}$; 4.88 (s, 1H, T^{OH}); 4.46-4.36 (m, 2H, Q^{α} {4.41}, T^{α} {4.40}}; 4.36-4.29 (m, 1H, P^{α}); 4.28-4.10 (m, 3H, M^{α} {4.24}, R^{α} {4.18}, A^{α} {4.15}); 3.91-3.80 (m, 1H, T^{β}); 3.79-3.69 (m, 1H, P^{δa}); 3.69-3.57 (m, 2H, P^{δb} {3.65}, V^{α} {3.62}); 3.14-3.01 (m, 2H, R^{\delta}); 2.48-2.32 (m, 2H, M^{γ}); 2.21-1.64 (m, 15H, Q^{γ} {2.12}, P^{β a} {2.08}, V^{β} {2.05}, M^{ϵ} {2.01}, $M^{\beta a}$ {1.91}, P^{γ} {1.86}, $Q^{\beta a}$ {1.83}, $R^{\beta a}$ {1.83}, $P^{\beta b}$ {1.81}, $M^{\beta b}$ {1.77}, $Q^{\beta b}$ {1.72}); 1.63-1.40 (m, 3H, $R^{\beta b}$ {1.57}, R^{γ} {1.47}); 1.21 (d, $J_{ABA\alpha} = 7.1$ Hz, 3H, A^{β}); 1.10 (d, $J_{TxTB} = 6.2$ Hz, 3H, T^{γ}); 0.96-0.85 (m, 6H, V^{γ} {0.92}, V^{γ} {0.90}; ¹³C-NMR (100.6 MHz, DMSO, ¹³C, HSOC, HMBC), δ (ppm) = 174.0 (Q^{eCONH2}); 173.2 (M^{CONH2}); 172.8 (A^{CO}); 171.8 (P^{CO}); 171.3 (R^{CO}); 171.0 (Q^{CO}); 169.1 (T^{CO}); 168.0 (V^{CO}); 156.9 (R^ξ); 66.8 (T^β); 59.5 (P^α); 57.4 (V^α); 56.7 (T^α); 52.5 (R^α); 52.1 (Q^α); 51.8 (M^α); 48.9 (A^α); 47.5 (P^δ); 40.4 (R^δ); 31.7 (M^β); 31.4 (Q^γ); 30.0 (V^β); 29.7 (M^γ); 29.1 (P^β); 28.7 (R^β); 28.4 (Q^β); 24.9 (R^γ); 24.7 (P^γ); 19.3 (T^γ); 18.4, 17.7 (V^γ, V^γ); 17.5 $(A^{\beta}); 14.7 (M^{\epsilon}).$

L-Alanyl-L-seryl-L-threonyl-L-glutaminyl-glycyl-L-leucyl-L-arginylamide (gPep8)

476 mg (0.1 mmol, loading: 0.21 mmol/g) of Fmoc-*L*-Arg(Pbf)-*RAM-Tentagel-S* resin were used in the synthesis as described above to yield 79 mg of crude peptide. The crude peptide was purified by *semi-preparative HPLC* ($R_t = 25.2 \text{ min}$, JUPITER, methanol + 0.1% TFA/water + 0.1% TFA, grad. (5:95) \rightarrow (20:80), 20 min; 5 min

constant; \rightarrow (5:95), 10 min; $\lambda = 214$ nm) to yield 60 mg (82 µmol, 82%) as a colourless, amorphous solid. Analytical HPLC: $R_t = 13.8$ (JUPITER, methanol + 0.1% TFA/water + 0.1% TFA, grad. (5:95) \rightarrow (20:80), 20 min; \rightarrow (100:0), 10 min; $\lambda = 214$ nm); $[\alpha]_D^{26}(c = 0.98, \text{ MeOH}) = -22.93^{\circ}$; ESI-MS (positive ion mode) m/z: 731.45 ([M+H]+, calcd.: 731.42); HR-ESI-MS (positive ion mode) m/z: calcd. for C₂₉H₅₅N₁₂O₁₀: 731.4164, found) 731.4150 [M+H]⁺; ¹H-NMR (400 MHz, DMSO, ¹H, COSY, TOCSY), δ (ppm) = 8.67 (d, $J_{SNH,S\alpha}$ = 7.7 Hz, 1H, S^{NH}); 8.22-8.09 (m, 3H; G^{NH} {8.17}, A^{NH2} {8.15}); 8.02-7.92 (m, 3H, Q^{NH} {7.99}, R^{NH} {7.97}, L^{NH} {7.96}); 7.86 (d, $J_{TNH,T\alpha} = 8.1$ Hz, 1H, T^{NH}); 7.76 (t, $J_{R\varepsilon NH,R\delta} = 5.6$ Hz, 1H, R^{εNH}); 7.29 (s, 1H, Q^{$\delta CONH2a$}); 7.26 (s, 1H, R^{CONH2a} ; 7.06 (s, 1H, R^{CONH2b}); 6.83 (s, 1H, $Q^{\delta \text{CONH2b}}$); 4.49 (dd, J = 6.0 Hz, J = 13.5 Hz, 1H, S^{α}); 4.31-4.05 (m, 5H, L^{α} {4.27}, T^{α} {4.21}, Q^{α} {4.21}, R^{α} {4.21}, T^{β} {4.07}); 3.97-3.88 (m, 1H, A^{α}); 3.76-3.57 (m, 4H, G^{α} $\{3.72\}, S^{\beta a} \{3.69\}, S^{\beta b} \{3.61\}); 3.09 (dd, J_{R\delta R\gamma} = 12.6 Hz, J_{R\delta R\varepsilon NH} = 6.5 Hz, 2H, R^{\delta}); 2.11 (t, J_{Q\gamma,Q\beta} = 7.9 Hz, 2H, R^{\delta}); 2.11 (t, J$ Q^{γ} ; 1.95-1.82 (m, 1H, $Q^{\beta a}$); 1.80-1.64 (m, 2H, $Q^{\beta b}$ {1.74}, $R^{\beta a}$ {1.68}); 1.63-1.39 (m, 6H, L^{γ} {1.58}, $R^{\beta b}$ {1.53}, \mathbb{R}^{γ} {1.45}, \mathbb{L}^{β} {1.45}); 1.35 (d, $J_{A\beta A\alpha} = 6.9 \text{ Hz}$, 3H, \mathbb{A}^{β}); 1.03 (d, $J_{T\gamma,T\beta} = 6.3 \text{ Hz}$, 3H, \mathbb{T}^{γ}); 0.86 (d, $J_{L\delta L \otimes} = 6.5 \text{ Hz}$, 3H, L^δ); 0.82 (d, J_{L^δ,L^γ} = 6.5 Hz, 3H, L^δ); ¹³C-NMR (100.6 MHz, DMSO, ¹³C, HSQC, HMBC), δ (ppm) = 174.1 (Q^{8CONH2}); 173.4 (R^{CONH2}); 172.0 (L^{CO}); 171.8 (Q^{CO}); 170.1 (T^{CO}); 170.0 (S^{CO}); 169.8 (A^{CO}); 168.8 (G^{CO}); 156.9 (R^{ξ}) ; 66.3 (T^{β}) ; 61.7 (S^{β}) ; 58.3 (T^{α}) ; 55.0 (S^{α}) ; 52.6 (Q^{α}) ; 52.2 (R^{α}) ; 51.3 (L^{α}) ; 48.1 (A^{α}) ; 42.1 (G^{α}) ; 40.7 (L^{β}) ; 40.4 (R^δ); 31.4 (Q^γ); 29.0 (R^β); 27.8 (Q^β); 25.3 (R^γ); 24.2 (L^γ); 23.1 (L^δ); 21.6 (L^δ); 19.8 (T^γ); 17.4 (A^β).

L-Alanyl-L-seryl-L-threonyl-L-glutamyl-L-prolyl-L-leucyl-L-arginylamide(Pep8)

476 mg (0.1 mmol, loading: 0.21 mmol/g) of Fmoc-*L*-Arg(Pbf)-*RAM-Tentagel-S* resin were used in the synthesis as described above to yield 75 mg of crude peptide. The crude peptide was purified by *semi-preparative HPLC* ($R_i = 27.5 \text{ min}$, JUPITER, methanol + 0.1% TFA/water + 0.1% TFA, grad. (5:95)→(20:80), 20 min; 5 min constant; →(5:95), 10 min; $\lambda = 214 \text{ nm}$) to yield 47 mg (61 µmol, 61%) as a colourless, amorphous solid. *Analytical HPLC*: $R_i = 12.7 \text{ min}$ (JUPITER, methanol + 0.1% TFA/water + 0.1% TFA, grad. (5:95)→(20:80), 20 min; →(100:0), 10 min; $\lambda = 214 \text{ nm}$); $[\alpha]_D^{27}$ (c = 1.02; MeOH/H₂O (1:1)) = -74.41 °; *ESI-MS* (positive ion mode) *m/z*: 771.48 ([M+H]⁺, calcd.: 771.45); *HR-ESI-MS* (positive ion mode) *m/z*: calcd. for C₃₂H₅₉N₁₂O₁₀: 771.4477, found: 771.4471 [M+H]⁺,); ¹H-NMR (400 MHz, DMSO, ¹H, *COSY*, *TOCSY*), δ (ppm) = 8.63 (d, $J_{SNH,S\alpha} = 7.7 \text{ Hz}$, 1H, S^{NH}) 8.16-8.05 (m, 3H, A^{NH2} {8.11}, L^{NH} {8.09}); 7.97 (d, $J_{QNH,Q\alpha} = 7.8 \text{ Hz}$, 1H, Q^{NH}); 7.29 (s, 1H, Q^{6CONH2a}); 7.25 (s, 1H, R^{CONH2a}); 7.11 (s, 1H, R^{CONH2b}); 6.88 (s, 1H, Q^{6CONH2b}); 4.55-4.43 (m, 2H, Q^α {4.51}, S^α {4.48}); 4.34-4.27 (m, 1H, P^α); 4.23-4.10 (m, 3H, T^α {4.20}, L^α {4.18}, R^α {4.15}); 4.08-4.00 (m, 1H, T^β); 3.96-3.87 (m, 1H, A^α); 3.69-3.42 (m, 4H, S^{βa} {3.65}, P^δ {3.60}, S^{βb} {3.58}); 3.08 (dd, $J_{R\delta R\gamma} = 12.7 \text{ Hz}, J_{R\delta R\delta HH} = 6.6 \text{ Hz}, 2H, R^δ); 2.12 (t, J_{Q;QB} = 7.5 \text{ Hz}, 2H Q^γ); 2.08-1.97 (m, 1H, P^{βa}); 1.93-1.76 (m, 4H, Q^{βa} {1.88}, P^{βb} {1.83}); 1.75-1.57 (m, 3H, R^{βa} {1.69}, Q^{βb} {1.67}, L^γ {1.60}); 1.57-1.39 (m, 5H, R^{βb} {1.50}, L^β$

{1.46}, R^{γ} {1.44}); 1.34 (d, $J_{A\beta,A\alpha}$ = 6.9 Hz, 3H, A^{β}); 1.03 (d, $J_{T\beta,T\alpha}$ = 6.3 Hz, 3H, T^{β}); 0.88 (d, $J_{L\delta,L\gamma}$ = 6.6 Hz, 3H, L^{δ}); 0.82 (d, $J_{L\delta,L\gamma}$ = 6.5 Hz, 3H, L^{δ}); ${}^{13}C$ -NMR (100.6 MHz, DMSO, ${}^{13}C$, HSQC, HMBC), δ (ppm) = 174.2 ($Q^{\delta CONNH2}$); 173.3 (R^{CONH2}); 171.9 (L^{CO}), 171.9 (P^{CO}); 170.0 (S^{CO}); 169.9 (T^{CO}), 169.8 (Q^{CO}); 169.7 (A^{CO}); 156.8 (R^{ξ}); 66.4 (T^{β}); 61.6 (S^{β}); 59.5 (P^{α}); 58.1 (T^{α}); 54.9 (S^{α}); 51.9 (R^{α}); 51.6 (L^{α}); 50.0 (Q^{α}); 48.1 (A^{α}); 46.9 (P^{δ}); 40.3 (R^{δ}); 40.1 (L^{β} (under the signal of DMSO)); 30.9 (Q^{γ}); 29.2 (P^{β}); 29.1 (R^{β}); 27.3 (Q^{β}); 25.1 (R^{γ}); 24.5 (P^{γ}); 24.2 (L^{γ}); 23.1 (L^{δ}); 21.5 ($L^{\delta^{-}}$); 19.9 (T^{γ}); 17.3 (A^{β}).

N-Biotinyl-12-amido-4,7,10-trioxa-dodecanoylamido-*L*-alanyl-*L*-seryl-*L*-threonyl-*L*-glutaminyl-*L*-prolyl-*L*-leucyl-*L*-arginylamide (Biotin-Pep8)

476 mg (0.1 mmol, loading: 0.21 mmol/g) of Fmoc-*L*-Arg(Pbf)-*RAM-Tentagel-S* resin were used in the synthesis as described above to yield 113 mg of crude peptide. The crude peptide was purified by *semi-preparative HPLC* ($R_t = 23.5 \text{ min}$, JUPITER, methanol/water, grad. (5:95) \rightarrow (40:60), 20 min; 10 min constant; $\lambda = 214 \text{ nm}$) to yield 57 mg (47.5 µmol, 47%) as a colourless, amorphous solid. *Analyticyl HPLC*: $R_t = 16.8 \text{ min}$ (Phenomenex JUPITER, methanol/water, grad.: (5:95) \rightarrow (40:60), 20 min; \rightarrow (100:0), 10 min; $\lambda = 214 \text{ nm}$); [α]_D²⁰ (c = 0.93, MeOH/H₂O (1:1)) = -37.69 °; *ESI-MS* (positive ion mode) *m/z*: 600.83 ([M+2H]²⁺, calcd.: 600.83); 611.81 ([M+H+Na]²⁺, calcd.: 611.82); 619.80 ([M+H+K]²⁺, calcd.: 619.81); 1200.65 ([M+H]⁺, calcd.:

00.64); *HR-ESI-MS* (positive ion mode) m/z: calcd. for $C_{51}H_{90}N_{15}O_{16}S$: 1200.6411, found: 1200.6407 [M+H]⁺; ^{1}H -NMR (600 MHz, DMSO, ^{1}H , COSY, TOCSY), δ (ppm) = 8.17-8.09 (m, 2H, A^{NH} {8.14}, L^{NH} {8.12}); 8.05 (d, $J_{SNH,S\alpha} = 7.4$ Hz, 1H, S^{NH}); 7.93 (d, $J_{QNH,Q\alpha} = 7.7$ Hz, 1H, Q^{NH}); 7.88 (t, $J_{SpacerNH,Spacer-H12} = 5.7$ Hz, 1H, Spacer-NH); 7.77 (d, $J_{RNH,R\alpha}$ = 8.1 Hz, 1H, R^{NH}); 7.65 (d, $J_{TNH,T\alpha}$ = 8.4 Hz, 1H, T^{NH}); 7.31 (s, 1H, Q^{8CONH2a}); 7.23 (s, 1H, R^{CONH2a}); 7.12 (s, 1H, R^{CONH2b}); 6.88 (s, 1H, Q^{6CONH2b}); 6.46 (s, 1H, Biotine-NH3); 6.39 (s, 1H, Biotine-NH1); 5.16 (t, $J_{SOH,S\beta} = 5.5$ Hz, 1H, S^{OH}); 4.89 (d, $J_{TOH,T\beta} = 5.4$ Hz, 1H, T^{OH}); 4.48 (pq, J = 7.5 Hz, 1H, Q^{α}); 4.36-4.27 (m, 4H, S^a {4.33}, A^a {4.32}, Biotine-H8 {4.30}, P^a {4.29}); 4.19-4.10 (m, 4H, T^a {4.17}, L^a {4.16}, Biotine-H4 {4.12}, R^{α} {4.12}); 4.03 (dq, $J_{T\beta T\alpha} = 9.6$ Hz, $J_{T\beta T\gamma} = 5.9$ Hz, 1H, T^β); 3.64-3.52 (m, 6H, S^{βa} {3.62}, P^{δ} {3.60}, Spacer-H3 {3.57}, $S^{\beta b}$ {3.54}); 3.50-3.45 (m, 8H, 4x Spacer-CH₂O); 3.38 (t, $J_{Spacer-H11,Spacer-H12b} = 5.9$ Hz, 2H, Spacer-H11); 3.17 (pq, J = 5.8 Hz, 2H, Spacer-H12); 3.11-3.04 (m, 3H, Biotine-H5 {3.08}, R⁸ {3.07}); 2.81 (dd, J_{Biotine-H7a,Biotine-H7b} = 12.5 Hz, J_{Biotine-H7a,Biotine-H8} = 5.1 Hz, 1H, Biotine-H7a); 2.57 (pd, J_{Biotine-H7b,Biotine-H7a} = 12.4 Hz, 1H, Biotine-H7b); 2.41-2.32 (m, 2H, Spacer-H2); 2.12 (t, J_{OχOβa/b} = 7.7 Hz, 2H Q^γ); 2.10-2.00 (m, 3H, P^{βa} {2.05}, Biotine-H12 {2.05}); 1.92-1.75 (m, 4H, Q^{βa} {1.89}, P^γ {1.83}, P^{βb} {1.80}); 1.74-1.56 (m, 4H, \mathbb{R}^{β_a} {1.70}, \mathbb{Q}^{β_b} {1.69}, \mathbb{L}^{γ} {1.63}, Biotine-H9a {1.58}); 1.56-1.38 (m, 8H, \mathbb{R}^{β_b} {1.52}, Biotine-H11 {1.51}, \mathbb{L}^{β} {1.47}, Biotine-H9b {1.44}, R^{γ} {1.42}); 1.35-1.22 (m, 2H, Biotine-H10); 1.19 (d, $J_{A\beta A\alpha} = 7.1$ Hz, 3H, A^{β}); 1.02 (d, $J_{T_{\chi}T\beta} = 6.3$ Hz, 3H, T^{γ}); 0.88 (d, $J_{L\delta L\gamma} = 6.5$ Hz, 3H, L^{δ}); 0.82 (d, $J_{L\delta,L\gamma} = 6.5$ Hz, 3H L^{δ}); ¹³C-NMR (150.9 MHz, DMSO, 13C, HSQC, HMBC), δ (ppm) = 174.4 (Q^{δ CONH2}); 173.4 (R^{CONH2}); 172.7 (A^{CO}); 173.4 (BiotineCO); 2x 172.1 (P^{CO}, L^{CO}); 170.3 (S^{CO}); 170.2 (Spacer-CO); 2x 170.0 (T^{CO}, Q^{CO}); 162.9 (Biotine-C2); 156.8 (R^ξ); 2x 69.8, 69.7, 69.6 (4x Spacer-CH₂O); 69.3 (Spacer-C11); 66.8 (Spacer-C3); 66.5 (T^β); 61.6 (S^β); 61.2 (Biotine-C4); 59.7 (P^α); 59.3 (Biotine-C8); 58.2 (T^α); 55.6 (Biotine-C5); 55.0 (S^α); 52.0 (R^α); 51.7 (L^α); 50.2 (Q^α); 48.2 (A^α); 47.0 (P^δ); 40.4 (R^δ); 40.1 (L^β); 40.0 (Biotine-C7); 38.6 (Spacer-C12); 35.9 (Spacer-C2); 35.2 (Biotine-C12); 31.0 (Q^γ); 29.3 (P^β); 29.1 (R^β); 28.3 (Biotine-C10); 28.1 (Biotine-C9); 27.2 (Q^β); 25.4 (Biotine-C11); 25.1 (R^γ); 24.6 (P^χ); 24.3 (L^γ); 23.2 (L^δ); 21.6 (L^{δ[°]}); 20.0 (T^γ); 18.4 (A^β).

N-Biotinyl-12-amido-4,7,10-trioxa-dodecanoylamido-*L*-valyl-*L*-glutaminyl-*L*-threonyl-*L*-prolyl-*L*-alanyl-*L*-arginyl-*L*-methionylamide (Biotine-Pep3)

417 mg (0.1 mmol, loading: 0.24 mmol/g) of Fmoc-L-Met-RAM-Tentagel-S resin were used in the synthesis as described above to yield 122 mg of crude peptide. The crude peptide was purified by semi-preparative HPLC (R_t = 25.4 min, JUPITER, methanol/water, grad. (5:95) \rightarrow (40:60), 20 min; 20 min constant; λ = 214 nm) to yield 72 mg (58.5 μ mol, 59%) as a colourless, amorphous solid. Analytical HPLC: $R_t = 18.7 \min$ (Phenomenex JUPITER, methanol/water, grad.: (5:95) \rightarrow (40:60), 20 min; \rightarrow (100:0), 10 min; $\lambda = 214$ nm); $[\alpha]_0^{21}$ (c = 0.99, MeOH/H₂O (1:1) = -42.40 °; ESI-MS (positive ion mode) m/z: 423.52 ([M+2H+K]³⁺, calcd.: 423.54); 615.82 ([M+2H]²⁺, calcd.: 615.82); 626.81 ([M+H+Na]²⁺, calcd.: 626.81); 634.79 ([M+H+K]²⁺, calcd.: 634.80); 1230.59 ([M+H]⁺, calcd.: 1230.63); *HR-ESI-MS* (positive ion mode) *m/z*: calcd. for C₅₂H₉₂N₁₅O₁₅S₂: 1230.6339, found:, 1230.6366 $[M+H]^+$; ¹*H-NMR* (600 MHz, DMSO, ¹*H*, *COSY*, *TOCSY*), δ (ppm) = 8.11 (d, $J_{ANH,A\alpha}$ = 6.6 Hz, 1H, A^{NH}); 8.08 (d, $J_{ONH.O\alpha} = 7.7$ Hz, 1H, Q^{NH}); 7.95-7.88 (m, 2H, R^{NH} {7.91}, V^{NH} {7.91}); 7.89-7.84 (m, 3H, Spacer-NH {7.87}, T^{NH} {7.86}, M^{NH} {7.86}); 7.58 (t, $J_{ReNH,R\delta} = 5.8$ Hz, 1H, R^{ε NH}); 7.31 (s, 1H, M^{CONH2a}); 7.27 (s, 1H, $Q^{\delta CONH2a}$); 7.11 (s, 1H, M^{CONH2b}); 6.79 (s, 1H, Q^{\delta CONH2b}); 6.47 (s, 1H, Biotine-NH3); 4.39 (pt, J = 6.9 Hz, 1H, T^{α}); 4.35-4.10 (m, 8H, P^{α} {4.31}, Biotine-H8 {4.31}, Q^{α} {4.28}, M^{α} {4.24}, R^{α} {4.19}, V^{α} {4.16}, A^{α} {4.15}, Biotine-H4 {4.12}); 3.88-3.79 (m, 1H, T^{β}); 3.75-3.68 (m, 1H, $P^{\delta a}$); 3.67-3.59 (m, 1H, $P^{\delta b}$); 3.60-3.53 (m, 2H, Spacer-H3); 3.51-3.45 (m, 8H, 4x Spacer-CH₂O); 3.38 (t, *J*_{Spacer-H11,Spacer-H12} = 5.9 Hz, 2H, Spacer-H11); 3.17 (pq, J = 5.8 Hz, 2H, Spacer-H12); 3.11-3.05 (m, 3H, Biotine-H5 {3.08}, R^{\delta} {3.07}); 2.81 (dd, $J_{Biotine-H7a, Biotine-H7b} =$ 12.5 Hz, J_{Biotine-H7a,Biotine-H8} = 5.1 Hz, 1H, Biotine-H7a); 2.57 (pd, J_{Biotine-H7b,Biotine-H7a} = 12.4 Hz, 1H, Biotine-H7b); 2.49-2.31 (m, 4H, Spacer-H2 {2.40}, M^{γ} {2.40}); 2.12-1.99 (m, 8H, Q^{γ} {2.07}, Biotin-H12 {2.06}, $P^{\beta a}$ {2.03}, M^{ϵ} {2.02}); 1.97-1.64 (m, 9H, $M^{\beta a}$ {1.99}, V^{β} {1.93}, P^{γ} {1.85}, $Q^{\beta a}$ {1.84}, $P^{\beta b}$ {1.80}, $M^{\beta b}$ {1.77}, $R^{\beta a}$ {1.70}, Q^{βb} {1.67}); 1.64-1.40 (m, 7H, Biotine-H9a {1.60}, R^{βb} {1.54}, Biotine-H11 {1.49}, R^γ {1.45}, Biotine-H9b {1.43}); 1.35-1.17 (m, 5H, Biotine-H10 {1.28} A^{β} {1.20}); 1.09 (d, $J_{T_{X}T\beta} = 6.3$ Hz, 3H, T^{γ}); 0.83 (d, $J_{V_XV\beta} = 6.7$ Hz, 3H, V^{γ}); 0.81 (d, $J_{V\gamma,VB}$ = 6.8 Hz, 3H, V^{γ}); ¹³C-NMR (150.9 MHz, DMSO, 13C, HSQC, HMBC), δ (ppm) = 174.0 (Q^{&CONH2}); 173.1 (M^{CONH2}); 172.6 (A^{CO}); 172.3 (Biotine-CO); 171.8 (P^{CO}); 171.4 (Q^{CO}); 2x 171.2 (R^{CO}, V^{CO} ; 170.5 (Spacer-CO); 169.1 (T^{CO}); 162.9 (Biotine-C2); 156.8 (R^{\xi}); 2x 69.8, 69.6, 69.5 (4x Spacer-CH₂O); 69.2 (Spacer-C11); 67.0 (Spacer-C3); 66.9 (T^β); 61.2 (Biotine-C4); 59.5 (P^α); 59.3 (Biotine-C8); 57.7 (V^α); 56.6 (T^{α}); 55.6 (Biotine-C5); 52.4 (R^{α}); 52.0 (Q^{α}); 51.8 (M^{α}); 48.8 (A^{α}); 47.5 (P^{δ}); 40.5 (R^{δ}); 40.1 (Biotine-C7); 38.6 (Spacer-C12); 36.0 (Spacer-C2); 35.2 (Biotine-C12); 31.8 (M^{β}); 31.5 (Q^{γ}); 30.6 (V^{β}); 29.7 (M^{γ}); 29.2 (P^{β}); 28.8 (R^{β}); 28.3 (Biotine-C10); 28.1 (Biotine-C9); 28.0 (Q^{β}); 25.4 (Biotine-C11); 25.0 (R^{γ}); 24.6 (P^{γ}); 19.4 (V^{γ}); 19.3 (T^{γ}); 18.2 (V^{γ}); 17,6 (A^{β}); 14.7 (M^{ϵ}).