Electronic Supplementary Information for

An ESIPT fluorescent dye based on HBI with high quantum yield and large stokes shift for selective detection of Cys

Ying Zhang,^{a, b} Jun-Hao Wang,^b Wenjie Zheng,^a Tianfeng Chen,^a Qing-Xiao Tong^{*b} and Dan Li^{*b}

^a Department of Chemistry, School of Life Science and Technology, Jinan University, Guangzhou 510632, China.
 ^b Department of Chemistry and Research Institute for Biomedical and Advanced Materials, Shantou University, Guangdong 515063, China.
 *E-mail: <u>axtong@stu.edu.cn</u>; <u>dli@stu.edu.cn</u>

Scheme S1. Schematic representation of the ESIPT photocycle.

Scheme S2. Synthetic routes of the HBIs and HBOs for comparison. M1: $NH_4Ac/HAc/reflux$. M2: $CH_2Cl_2/Ethanol/HAc/reflux$.

Fig. S1 Intermolecular stacking of DPIN viewed from *a* direction and the single Crystal structure of DPIN.

Dihedral angle (°)							
A-C	51.87	A'-C'	43.97				
B-C	16.46	B'-C'	34.50				
D-C	17.81	D'-C'	17.70				
Weak interaction (Å)							
bond Molecule	N-H…O	С-Н…π	O-H…N				
M-1	2.04	3.29	1 74				
	2.04	3.08	1.74				
M-2	2 01	3.27	1 75				
	2.01	3.11	1.75				

Table S1 Data of selected dihedral angles and weak interactions of DPIN (see also Fig. 1)

Parameters	DPIN				
Formula	C ₂₅ H ₁₈ N ₂ O				
M _r	362.14				
Temp (<i>K</i>)	298(2)				
Cryst system	Triclinic				
Space group	p-1				
<i>a</i> (Å)	12.0614(10)				
b (Å)	12.2502(10)				
<i>c</i> (Å)	14.7645(13)				
lpha (deg)	87.449(7)				
eta (deg)	85.384(7)				
γ (deg)	72.203(7)				
V(Å ³)	2069.9(3)				
Ζ	2				
$D_{calcd}(g \text{ cm}^{-3})$	1.296				
μ (mm⁻¹)	1.777				
Reflcns collcd	14791				
Unique reflcns	8119				
R _{int}	0.0832				
R1[I>2σ(I)] ^α	0.0720				
wR2[I>2ơ(I)] ^a	0.2514				
R1(all data)	0.0832				
wR2(all data)	0.2817				
GOOF	1				
${}^{a}R_{1} = \sum (\overline{F_{0} } - F_{c}) / \sum F_{0} ; wR_{2} = [\sum_{w} (F_{0}^{2} - F_{c}^{2})^{2} / \sum w (F_{0}^{2})^{2}]^{1/2}$					

Table S2 Crystal data and structure refinement for DPIN

	Bond len	gths (Å)		Bond angles (°)			
C(40)-N(1)	1.331(3)	C(17)-O(1)	1.364(3)	N(1)-C(40)-N(2)	110.51(17)	N(3)-C(15)-C(16)	123.95(18)
C(40)-N(2)	1.345(3)	C(17)-C(18)	1.364(3)	N(1)-C(40)-C(41)	124.11(17)	N(4)-C(15)-C(16)	125.64(18)
C(40)-C(41)	1.462(3)	C(7)-C(8)	1.377(3)	N(2)-C(40)-C(41)	125.36(17)	C(5)-C(4)-C(3)	118.0(2)
C(41)-C(42)	1.371(3)	C(7)-N(3)	1.383(3)	C(42)-C(41)-C(50)	118.59(18)	C(5)-C(4)-C(7)	122.6(2)
C(41)-C(50)	1.431(3)	C(7)-C(4)	1.472(3)	C(42)-C(41)-C(40)	122.37(18)	C(3)-C(4)-C(7)	119.3(2)
C(42)-C(43)	1.410(3)	C(43)-C(44)	1.415(3)	C(50)-C(41)-C(40)	119.03(17)	C(28)-C(29)-C(30)	119.1(2)
C(16)-C(25)	1.368(3)	C(33)-N(2)	1.372(3)	C(41)-C(42)-C(43)	122.07(19)	C(28)-C(29)-C(32)	121.5(2)
C(16)-C(17)	1.425(3)	C(33)-C(32)	1.380(3)	C(41)-C(42)-H(42)	119.0	C(30)-C(29)-C(32)	119.4(2)
C(16)-C(15)	1.462(3)	C(33)-C(34)	1.476(3)	C(43)-C(42)-H(42)	119.0	N(1)-C(32)-C(33)	109.34(17)
C(50)-O(2)	1.358(3)	C(15)-N(3)	1.324(3)	C(25)-C(16)-C(17)	118.67(19)	N(1)-C(32)-C(29)	119.64(18)
C(50)-C(49)	1.367(3)	C(15)-N(4)	1.345(3)	C(25)-C(16)-C(15)	122.48(18)	C(33)-C(32)-C(29)	130.96(19)
C(24)-C(19)	1.411(3)	C(4)-C(5)	1.390(3)	C(17)-C(16)-C(15)	118.85(18)	C(16)-C(25)-C(24)	121.8(2)
C(24)-C(25)	1.415(3)	C(4)-C(3)	1.393(3)	O(2)-C(50)-C(49)	119.77(19)	C(16)-C(25)-H(25)	119.1
C(24)-C(23)	1.418(3)	C(29)-C(28)	1.389(4)	O(2)-C(50)-C(41)	119.88(18)	C(24)-C(25)-H(25)	119.1
C(49)-C(48)	1.406(3)	C(29)-C(30)	1.392(4)	C(49)-C(50)-C(41)	120.35(19)	N(4)-C(8)-C(7)	105.62(18)
C(48)-C(43)	1.420(3)	C(29)-C(32)	1.474(3)	C(19)-C(24)-C(25)	118.5(2)	N(4)-C(8)-C(9)	117.65(18)
C(48)-C(47)	1.420(3)	C(32)-N(1)	1.375(3)	C(19)-C(24)-C(23)	119.2(2)	C(7)-C(8)-C(9)	136.6(2)
C(8)-N(4)	1.375(3)	C(8)-C(9)	1.479(3)	C(25)-C(24)-C(23)	122.3(2)	C(17)-C(18)-C(19)	120.6(2)
C(18)-C(19)	1.411(3)	C(34)-C(35)	1.389(3)	C(50)-C(49)-C(48)	121.27(19)	C(17)-C(18)-H(18)	119.7
C(34)-C(39)	1.392(3)	C(19)-C(20)	1.428(3)	C(50)-C(49)-H(49)	119.4	C(19)-C(18)-H(18)	119.7
C(35)-C(36)	1.384(4)	C(47)-C(46)	1.352(4)	C(48)-C(49)-H(49)	119.4	C(35)-C(34)-C(39)	118.3(2)
C(44)-C(45)	1.369(4)	C(5)-C(6)	1.387(4)	C(49)-C(48)-C(43)	119.02(19)	C(35)-C(34)-C(33)	120.8(2)
C(9)-C(10)	1.378(4)	C(9)-C(14)	1.397(4)	C(49)-C(48)-C(47)	123.1(2)	C(39)-C(34)-C(33)	120.7(2)
C(23)-C(22)	1.358(4)	C(30)-C(31)	1.383(4)	C(43)-C(48)-C(47)	117.8(2)	C(24)-C(19)-C(18)	119.4(2)
C(36)-C(37)	1.361(5)	C(39)-C(38)	1.382(4)	O(1)-C(17)-C(18)	119.35(19)	C(24)-C(19)-C(20)	118.6(2)
C(46)-C(45)	1.394(5)	C(6)-C(1)	1.375(5)	C(49)-C(48)-C(47)	123.1(2)	C(35)-C(34)-C(33)	120.8(2)
C(28)-C(27)	1.401(4)	C(20)-C(21)	1.368(4)	C(43)-C(48)-C(47)	117.8(2)	C(39)-C(34)-C(33)	120.7(2)
C(21)-C(22)	1.389(5)	C(10)-C(11)	1.401(5)	O(1)-C(17)-C(18)	119.35(19)	C(24)-C(19)-C(18)	119.4(2)
C(2)-C(1)	1.385(5)	C(14)-C(13)	1.379(4)	O(1)-C(17)-C(16)	119.84(19)	C(24)-C(19)-C(20)	118.6(2)
C(38)-C(37)	1.384(5)	C(13)-C(12)	1.383(6)	C(18)-C(17)-C(16)	120.8(2)	C(18)-C(19)-C(20)	122.0(2)
C(12)-C(11)	1.352(7)	C(27)-C(26)	1.367(7)	C(8)-C(7)-N(3)	108.76(18)	C(36)-C(35)-C(34)	120.5(3)
C(31)-C(26)	1.358(7)	C(51)-Cl(2)	1.678(10)	C(8)-C(7)-C(4)	132.0(2)	C(36)-C(35)-H(35)	119.8
C(51)-Cl(1)	1.693(9)			N(3)-C(7)-C(4)	119.19(18)	C(34)-C(35)-H(35)	119.8
				C(42)-C(43)-C(44)	122.1(2)	C(46)-C(47)-C(48)	121.3(3)
				C(42)-C(43)-C(48)	118.63(19)	C(46)-C(47)-H(47)	119.3
				C(44)-C(43)-C(48)	119.3(2)	С(48)-С(47)-Н(47)	119.3
				N(2)-C(33)-C(32)	105.36(17)	C(45)-C(44)-C(43)	120.6(3)
				N(2)-C(33)-C(34)	120.16(17)	C(45)-C(44)-H(44)	119.7
				C(32)-C(33)-C(34)	134.44(19)	C(6)-C(5)-C(4)	120.7(2)
	1			N(3)-C(15)-N(4)	110.39(18)	C(6)-C(5)-H(5)	119.6

Table S3 Selected Bond lengths	(Å)	and bond	angles	(°)	for DPIN
--------------------------------	-----	----------	--------	-----	----------

Bond angles (°)								
C(4)-C(5)-H(5)	120.9(3)	C(4)-C(3)-H(3)	119.5	C(10)-C(9)-C(14)	118.2(2)			
C(2)-C(3)-H(3)	119.5	C(10)-C(9)-C(8)	121.9(2)	C(14)-C(9)-C(8)	119.5(2)			
C(24)-C(23)-H(23)	119.7	C(22)-C(23)-C(24)	120.6(3)	С(22)-С(23)-Н(23)	119.7			
C(31)-C(30)-C(29)	120.3(3)	C(31)-C(30)-H(30)	119.8	С(29)-С(30)-Н(30)	119.8			
С(35)-С(36)-Н(36)	119.7	C(37)-C(36)-H(36)	119.7	C(37)-C(36)-C(35)	120.5(3)			
С(35)-С(36)-Н(36)	119.7	C(38)-C(39)-C(34)	120.9(3)	С(38)-С(39)-Н(39)	119.6			
С(34)-С(39)-Н(39)	119.6	C(47)-C(46)-C(45)	120.9(2)	С(47)-С(46)-Н(46)	119.6			
C(45)-C(46)-H(46)	119.6	C(1)-C(6)-C(5)	120.8(3)	C(1)-C(6)-H(6)	119.6			
C(5)-C(6)-H(6)	119.6	C(29)-C(28)-C(27)	119.1(4)	C(29)-C(28)-H(28)	120.5			
C(27)-C(28)-H(28)	120.5	C(21)-C(20)-C(19)	119.9(3)	С(21)-С(20)-Н(20)	120.0			
С(19)-С(20)-Н(20)	120.0	C(20)-C(21)-C(22)	121.0(2)	С(20)-С(21)-Н(21)	119.5			
C(22)-C(21)-H(21)	119.5	C(9)-C(10)-C(11)	120.0(3)	C(9)-C(10)-H(10)	120.0			
С(11)-С(10)-Н(10)	120.0	C(3)-C(2)-C(1)	120.5(3)	C(3)-C(2)-H(2)	119.8			
C(1)-C(2)-H(2)	119.8	C(6)-C(1)-C(2)	119.0(2)	C(6)-C(1)-H(1)	120.5			
C(13)-C(14)-H(14)	119.5	C(13)-C(14)-C(9)	121.0(3)	C(2)-C(1)-H(1)	120.5			
C(9)-C(14)-H(14)	119.5	C(23)-C(22)-C(21)	120.6(3)	С(23)-С(22)-Н(22)	119.7			
C(21)-C(22)-H(22)	119.7	C(39)-C(38)-C(37)	119.6(3)	С(39)-С(38)-Н(38)	120.2			
C(37)-C(38)-H(38)	120.2	C(44)-C(45)-C(46)	120.1(2)	С(44)-С(45)-Н(45)	120.0			
C(46)-C(45)-H(45)	120.0	C(14)-C(13)-C(12)	120.0(4)	С(14)-С(13)-Н(13)	120.0			
С(12)-С(13)-Н(13)	120.0	C(36)-C(37)-C(38)	120.1(3)	С(36)-С(37)-Н(37)	119.9			
С(38)-С(37)-Н(37)	119.9	C(11)-C(12)-C(13)	119.5(3)	С(11)-С(12)-Н(12)	120.2			
С(13)-С(12)-Н(12)	120.2	C(26)-C(27)-C(28)	120.9(4)	С(26)-С(27)-Н(27)	119.6			
C(28)-C(27)-H(27)	119.6	C(12)-C(11)-C(10)	121.1(4)	С(12)-С(11)-Н(11)	119.4			
С(10)-С(11)-Н(11)	119.4	C(26)-C(31)-C(30)	120.6(4)	С(26)-С(31)-Н(31)	119.7			
C(30)-C(31)-H(31)	119.7	C(31)-C(26)-C(27)	120.1(3)	С(31)-С(26)-Н(26)	120.0			
C(27)-C(26)-H(26)	120.0	Cl(2)-C(51)-Cl(1)	115.0(5)	C(40)-N(1)-C(32)	106.29(16)			
C(15)-N(3)-C(7)	106.73(16)	C(40)-N(2)-C(33)	108.49(16)	C(40)-N(2)-H(2A)	122(2)			
C(33)-N(2)-H(2A)	129(2)	C(15)-N(4)-C(8)	108.49(17)	C(15)-N(4)-H(4)	127.0(18)			
C(50)-O(2)-H(2B)	112(2)	C(17)-O(1)-H(1A)	103(3)					

Fig. S2 Fluorescent emission of HPI-1, HPI-2, HPO1, HPO-2 in different solvent. All the concentration is 10 μM.

Fig. S3. Fluorescent performance of DPIN (10 $\mu M)$ in THF with different proportion of H_2O from 0 to 80%.

Fig. S4. (a), DPIN solution in pure water (10 μ M)standing for 12h. left: under daylight. Right: under 365nm excitation. (b), Emission spectra of DPIN in pure water (10 μ M) at initial state and after standing for 12h.

Fig. S5. Intensity of Keto emission and Enol emission towards time. (a), GSH, (b), Hcy. Emission spectra of probe in PBS buffer (20 mM, pH, 7.2) towards GSH (c) and Hcy (d) with time increasing.