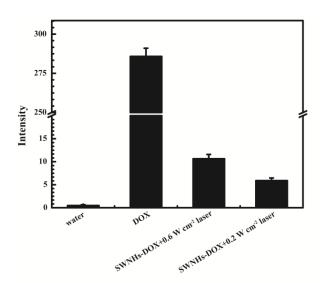
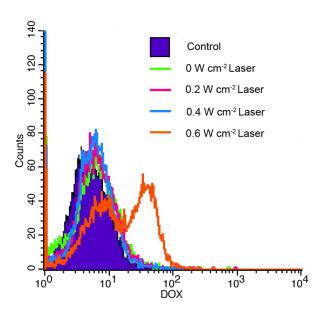
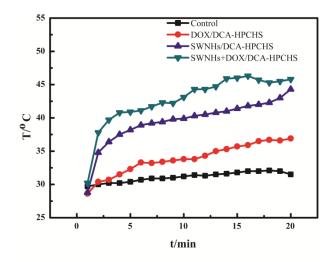

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2014


## **Supporting Information**

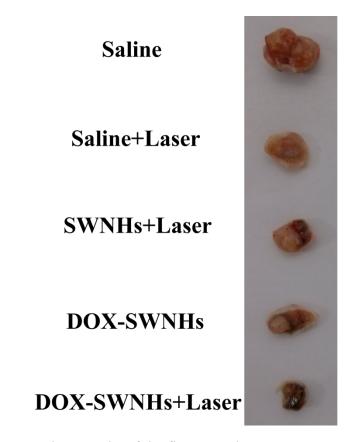
## In Vitro and In Vivo Photothermally Enhanced Chemotherapy by Single-Walled Carbon Nanohorns as a Drug Delivery System


Daiqin Chen, Chao Wang, Feng Jiang, Zhuang Liu, Chunying Shu\*, and Lijun Wan\*




**Figure S1.** Viability of 4T1 cells incubated with either SWNHs/DCA-HPCHS (a) or DOX-SWNHs/DCA-HPCHS (b) with an 808 nm laser irradiation at a series of power density (0 W cm<sup>-2</sup>, 0.2 W cm<sup>-2</sup>, 0.4 W cm<sup>-2</sup> and 0.6 W cm<sup>-2</sup>).




**Figure S2.** The fluorescence intensity of water, free DOX and DOX-SWNHs/DCA-HPCHS with an 808 nm laser irradiation at either 0.2 W cm<sup>-2</sup> or 0.6 W cm<sup>-2</sup>.



**Figure S3.** Flow cytometry of 4T1 cells incubated with DOX-SWNHs/DCA-HPCHS exposed to 808 nm laser irradiation at a series of power densities (0 W cm<sup>-2</sup>, 0.2 W cm<sup>-2</sup>, 0.4 W cm<sup>-2</sup>and 0.6 W cm<sup>-2</sup>).



**Figure S4.** The temperature elevation on the surface of tumors of mice.



**Figure S5.** Tumor photographs of the five treated groups.