Multifunctional Semiconducting Polymer Dots for Selective Recognition, Imaging, Detection, and Photo-Killing of Bacteria

Yi Wan^a, Yan Sun^a, Dandan Lv^{a,b}, Dun Zhang^{a,*},

^a Key Laboratory of Marine Environmental Corrosion and Bio-fouling,

Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road,

Qingdao 266071, China

^b University of Chinese Academy of Sciences, 19 (Jia) Yuquan Road, Beijing 100039, China

^{*}Corresponding author. Tel.: +86 532 82898960; Fax: +86 532 82898960 E-mail address: zhangdun@qdio.ac.cn

Figure S1 synthesis of functionalized PFBT.A mixture of 2,7-dibromo-9,9-bis(3-(tert-butyl propanoate))fluorine (monomer A, 0.232 g), 4,7-dibromobenzo[c][1,2,5]thiadiazole (monomer B, 0.176 g), and 9,9-dioctylfluorene-2,7-diboronic acid bis(1,3-propanediol) ester (monomer C, 0.56 g) were dissolved in 20 mL toluene, and then Bu₄NBr (12.5 mg) and 20 mL Na₂CO₃ (2 mol L-1) were added. The reaction system was degassed and refilled with argon after addition of Pd(PPh₃)₄ (50 mg). The mixture was stirred vigorously at 85 °C for 36 hours and phenylboronic acid (0.1 g) pre-dissolved in 1 mL tetrahydrofuran was added in 2 hours. Then 1 mL bromobenzene was rejected for further 3 hour. Methanol (100 mL) was poured into the mixture to form a yellow precipitate. The precipitate was filtered and washed with methanol, water and acetone, respectively. The resulting solid was dissolved in CH₂Cl₂ (10 mL), filtered using a 0.2 um membrane. The filtrate liquor was concentrated and reprecipitated in methanol (30 mL). The power (364 mg, 62%) was collected by filtration, washed with methanol and dried in vacuo. The protecting group, tert-butyl esters, was removed by trifluoroacetic acid (TFA). TFA (2 mL) was added into a solution of polymer (100 mg) in CH_2Cl_2 (20 mL) at room temperature for 12 hours. The organic layer was washed with Mili-Q water and then stirred with NaOH (10%, 10 mL). The aqueous phase containing NaOH and PFBT was subjected to dialysis for 5 days and lyophilization to yield a water-soluble product of PFBT (297 mg, 83%).

- 100

-0

0.0

Figure S3 FI-IR spectra of PFBT polymer with (b) and without (a) side-chain carboxylic acid functional groups.

Figure S4 Transmission electron microscopy (left) and dynamic light scattering (right) measurements of PFBT dots. Scale bars is 50 nm.

	Pdots	Van-Pdots	PB-Pdots
DLS diameter (mean)	63.4±4.3	62.7±5.1	64.2 ± 3.7
(nm)			
polydispersity index	1.92	1.88	1.83
excitation peak (nm)	486	491	487
emission peak (nm)	536	535	536
quantum yield (%)	14.4	13.7	12.4

Table S1. Analysis of All semiconducting Pdots in Water

Figure S5 Absorption (a) and fluoresence (b) spectra of Pdots

Figure S6 Zeta potential distribution of Pdots(a), Van-Pdots (b) and PB-Pdots (c).

Figure S7 Photo-killing properties of eight different bacteia after incubation with 2.5 μmol L⁻¹ of Van-Pdots (a) and PB-Pdots (b) under white light illumination for 1 hour.

Figure S8 Photo-killing properties of *S. aureus* and *P. aeruginose* after incubation with a low concentration of Van-Pdots (a) and PB-Pdots (b) under white light illumination for 1 hour.

Figure S9 FT-IR spectra of antibiotic and antibiotic-functionalized Pdots.

Figure S10 Photo-killing properties of *S. aureus* and *P. aeruginose* after incubation with a low concentration of Pdots under white light illumination for 1 hour.