Biodegradable electroactive polymers for electrochemicallytriggered drug delivery

John G. Hardy, ^{*a,b**} David J. Mouser, ^{*a*} Netzahualcóyotl Arroyo-Currás, ^{*c*} Jacqueline K. Chow, ^{*a*} Lindsey Nguy, ^{*a*} Jong M. Kim ^{*a*} and Christine E. Schmidt ^{*a,b**}

^a Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, United States of America.

^b J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Biomedical Sciences Building JG-53, P.O. Box 116131, Gainesville, FL 32611-6131, United States of America.

^c Center for Electrochemistry, Chemistry Department, The University of Texas at Austin, Austin, TX78712, United States of America. Email: <u>johnhardyuk@gmail.com</u> or <u>schmidt@bme.ufl.edu</u>

Scheme S1 Synthesis of the aniline pentamers incorporated in the electroactive polyesters. a) DCM, 24 h, r.t.; b) *p*-phenylenediamine, DMF, H₂O, HCl, (NH₄)₂S₂O₈, 1h, 0 °C.

Fig. S1 TGA mass loss profiles of the electroactive polyesters. A) Polyester 1 undoped, black line; polyester 1 doped with CSA, dashed black line; polyester 2 undoped, grey line; polyester 2 doped with CSA, dashed grey line; B) polyester 3 undoped, black line; polyester 3 doped with CSA, dashed black line; polyester 4 undoped, grey line; polyester 4 doped with CSA, dashed grey line.

	Polyester 1	Polyester 2	Polyester 3	Polyester 4
AP content (wt %)	61.5	22.0	56.7	27.5
	$(62.6)^{a}$	$(25.1)^{a}$	$(55.8)^{a}$	(25.1) ^a
PEG content (wt %)	38.5	78.0	N/A ^b	N/A ^b
	$(37.4)^{a}$	$(74.9)^{a}$		
PCL content (wt %)	N/A ^b	N/A ^b	43.3	72.5
			$(44.2)^{a}$	(74.9) ^a

Table S1 Polyester compositions as determined by TGA

^a) Theoretical content based upon a 1:1 ratio of carboxylic acid-terminated aniline pentamers (APs) and alcoholterminated poly(ethylene glycol)s (PEGs) or poly(caprolactone)s (PCLs). b) Not applicable.

Table S2 Polyester solubilities in various solvents

	Polyester 1	Polyester 2	Polyester 3	Polyester 4
Acetone	SS	SS	SS	Ι
Chloroform	SS	SS	SS	SS
Dichloromethane	SS	SS	SS	SS
Dimethylformamide	Ι	Ι	Ι	Ι
Dimethyl sulfoxide	S ^{a,c}	S ^{a,c}	S ^{a,c}	S ^{a,c}
Ethanol	SS	SS	SS	SS
Hexanes	Ι	Ι	Ι	Ι
Hexafluoroisopropanol	S ^{b,c}	S ^{b,c}	S ^{b,c}	S ^{b,c}
Methanol	SS	SS	SS	SS
N-methyl-2-pyrrolidone	S ^{a,c}	S ^{a,c}	S ^{a,c}	S ^{a,c}
Tetrahydrofuran	SS	SS	SS	SS
Water	Ι	Ι	Ι	Ι
Hater/HCl (1M)	SS	SS	SS	SS

I) Insoluble; sparingly soluble (SS, $0 \le 1 \text{ mg/mL}$); soluble (S, > 1 mg/mL). ^a) Samples filtered quickly through a Durapore® poly(vinylidenedifluoride) (PVDF) membrane filter unit with a pore size of 220 nm (filtration was swift to prevent dissolution of the membrane). ^b) Samples were centrifuged in polypropylene microcentrifuge tubes (Fisher Scientific, USA) at 6000 rpm for 15 minutes in a microcentrifuge (Eppendorf, USA) prior to DLS. ^c) Dynamic light scattering (DLS) experiments carried out in quartz cuvettes (Hellma, USA) using a Zetasizer Nano ZS (Malvern Instruments Ltd, UK) indicated the presence of particles with heterogeneous size distributions (data not shown).

Fig. S2 XRD spectra of the electroactive polyesters. A) Polyester 1 undoped, black line; polyester 1 doped with CSA, grey line; B) polyester 2 undoped, black line; polyester 2 doped with CSA, grey line; C) polyester 3 undoped, black line; polyester 3 doped with CSA, grey line; D) polyester 4 undoped, black line; polyester 4 doped with CSA, grey line.

Fig. S3 DSC thermographs of the second heating/cooling cycle of the electroactive polyesters. A) Polyester 1 undoped, black line; polyester 1 doped with CSA, grey line; B) polyester 2 undoped, black line; polyester 2 doped with CSA, grey line; C) polyester 3 undoped, black line; polyester 3 doped with CSA, grey line; D) polyester 4 undoped, black line; polyester 4 doped with CSA, grey line.

Fig. S4 FT-IR spectra of the electroactive polyesters doped with CSA. A) Polyester **1** doped with CSA; B) polyester **2** doped with CSA; C) polyester **3** doped with CSA; D) polyester **4** doped with CSA. Peaks at ca. 3293 cm⁻¹ correspond to the amide NH bonds in the AP blocks; peaks at ca. 2920 and 2849 cm⁻¹ correspond to the alkyl CH bonds in the backbones of the polymers; peaks at 1732 cm⁻¹ correspond to ester bonds; peaks at ca. 1650 cm⁻¹ correspond to the amide C=O bonds in the AP blocks, peaks at ca. 1597 and 1504 cm⁻¹ correspond to the quinoid and benzenoid rings in the AP blocks.

Fig. S5 Voltammograms of metastable solutions of HCl-doped polyesters in DMSO/PBS. A) Polyester **1** doped with HCl; B) polyester **2** doped with HCl; C) polyester **3** doped with HCl; D) polyester **4** doped with HCl. Scan rate = 20 mV s^{-1} .

Scheme S2 Oligoaniline pH and oxidation/reduction dependent interconversion. Only the emeraldine salt is conducting. X represents an arbitrary conjugate base; in this manuscript, the conjugate bases of hydrochloric acid (HCI), camphorsulfonic acid (CSA) or dexamethas one phosphate (DMP).

Fig. S6 Voltammogram of 0.6 mM ferrocenemethanol in 0.1 M KCl. Scan rate = 10 mV s⁻¹. See the literature for a comparison: A. Heras, A. Colina, J. Lopez-Palacios, A. Kaskela, A. Nasibulin, V. Ruiz, E. Kauppinen, *Electrochem. Commun.* 2009, 11, 442-445.

Fig. S7 A) Experimental setup for electrochemically-triggered drug delivery via potential cycling. Pt mesh counter electrode (CE), Ag/AgCl reference electrode (RE), DMP-doped polymer film coated on a glassy carbon working electrode (WE). B) Experimental setup for electrochemically-triggered drug delivery via a potential step. Counter electrode (CE), reference electrode (RE), working electrode (WE).

Fig. S8 Voltammograms of DMP-doped films of polyester **1** on glassy carbon electrodes in PBS demonstrating electrochemically-triggered release of the DMP, evident from the sequentially diminished current densities during repetitive potential cycling of the films, particularly noticeable in A and B. A) cycles 1 to 12. B) cycles 13 to 24. C) cycles 25 to 36. D) cycles 37 to 48. Scan rate = 50 mV s⁻¹.

Fig. S9 Voltammograms of DMP-doped films of polyester **2** on glassy carbon electrodes in PBS demonstrating electrochemically-triggered release of the DMP, evident from the sequentially diminished current densities during repetitive potential cycling of the films, particularly noticeable in A and B. A) cycles 1 to 12. B) cycles 13 to 24. C) cycles 25 to 36. D) cycles 37 to 48. Scan rate = 50 mV s⁻¹.

Fig. S10 Voltammograms of DMP-doped films of polyester **3** on glassy carbon electrodes in PBS demonstrating electrochemically-triggered release of the DMP, evident from the sequentially diminished current densities during repetitive potential cycling of the films, particularly noticeable in A and B. A) cycles 1 to 12. B) cycles 13 to 24. C) cycles 25 to 36. D) cycles 37 to 48. Scan rate = 50 mV s⁻¹.

Fig. S11 Voltammograms of DMP-doped films of polyester 4 on glassy carbon electrodes in PBS demonstrating electrochemically-triggered release of the DMP, evident from the sequentially diminished current densities during repetitive potential cycling of the films, particularly noticeable in A and B. A) cycles 1 to 12. B) cycles 13 to 24. C) cycles 25 to 36. D) cycles 37 to 48. Scan rate = 50 mV s⁻¹.

Fig. S13 In vitro degradation of the films of undoped polyesters 1-4 in PBS in the absence (hollow circles) or presence (filled circles) of cholesterol esterase (4 units/mL). A) Polyester 1; B) polyester 2; C) polyester 3; D) polyester 4.

Fig. S14 Cell adhesion on various electroactive surfaces after 48 hours in culture. A) human dermal fibroblasts (HDFs) on indium tin oxide (ITO); B) human Mesenchymal stem cells (HMSCs) on ITO; C) HDFs on polyester 2 doped with CSA at a mole ratio of 1:1 CSA:AP; D) HMSCs on polyester 2 doped with CSA at a mole ratio of 1:1 CSA:AP; E) HDFs on polyester 4 doped with CSA at a mole ratio of 1:1 CSA:AP; F) HMSCs on polyester 4 doped with CSA at a mole ratio of 1:1 CSA:AP; F) HMSCs on polyester 4 doped with CSA at a mole ratio of 1:1 CSA:AP. Actin filaments within cells were stained green with Alexa Fluor 488 $^{\circ}$ Phalloidin and nuclei within cells were stained blue with DAPI. The scale bar represents 100 μ m.

Fig. S15 Assessment of the cell viability of human dermal fibroblasts on various surfaces after 2 and 4 days in culture as determined using an AlamarBlue® Assay Kit. Black bar) Day 0. Grey bar) Day 2. White bar) Day 4.