Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxxx

ARTICLE TYPE

Electronic Supplementary Information

Tunable nano-carriers from glycosaminoglycan block copolymers

Ramon Novoa-Carballal^{a,b*}, Carla Silva^a, Stephanie Möller^c, Matthias Schnabelrauch^c, Rui L. Reis^a and Iva Pashkuleva^{a*}

Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX DOI: 10.1039/b000000x

S1. ¹H NMR Characterisation of the block copolymers

CS-*b*-PEG (300 MHz, D₂O, 293K) δ : 7.66 (d, J = 3.9 Hz, oxime N-CH), 6.96 (d, J = 5.3 Hz, oxime N-CH), 4.64-3.32 (m, H1-H6 protons of UA and GalNAc, CH₂ of PEG), 3.38 (s, CH₃O PEG). 2.07 (s, CH₃ of N-acetylglucosamine). N-CH protons are only visible in the¹H NMR spectrum of the lowest molecular weight CS.

Figure S1. ¹H NMR (300 MHz, D₂O, 298K): (A) CS_{3k}-b-PEG and (B) precursor CS_{3k}.

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxxx

ARTICLE TYPE

Figure S2. ¹H NMR (300 MHz, D₂O, 298K) of CS_{24k}-*b*-PEG.

Figure S3. ¹H NMR (300 MHz, D₂O, 298K) of CS_{12k}-*b*-PEG

www.rsc.org/xxxxx

ARTICLE TYPE

HAS-*b*-PEG (300 MHz, D₂O, 293K) δ: 7 4.64-3.32 (m, H1-H6 protons of HAs, CH₂ of PEG), 3.38 (s, CH₃O PEG), 2.07 (s, CH₃ of N-acetylglucosamine).

Figure S4. ¹H NMR (300 MHz, D₂O, 293K) of HAs_{36k}-*b*-PEG.

Figure S5. ¹H NMR (300 MHz, D₂O, 293K) of HAS_{16k}-*b*-PEG.

www.rsc.org/xxxxxx

ARTICLE TYPE

S2. Molecular weight of the synthesised block copolymers

Briefly, we analysed each of the blocks (PEG and the respective GAG) before copolymerisation by ¹H NMR and GPC. The determined molecular weights were related to the ¹H NMR integrals. The number of the repeating units of the block copolymer was estimated from the ¹H NMR using the integral of the of the acetyl group (2.06 ppm) in GAG and compared it to the integral of the multiplet between 4.55 and 3.20 ppm that corresponds to the H1-H6 of the GAG and the CH2O and MeO groups of PEG.

S3. GPC eluograms of the block copolymers

Figure S6. Comparative eluograms of the PEG-ONH₂ and CS-*b*-PEG (A) and HAS-*b*-PEG.

www.rsc.org/xxxxxx

ARTICLE TYPE

Figure S7. CS_{3k}-*b*-PEG eluogram (0.1 M NaN₃, 0.01 M NaH₂PO₄). Black line represents refractive index, and red line light scattering signals.

Figure S8. CS_{14k}-*b*-PEG eluogram (0.1 M NaN₃, 0.01 M NaH₂PO₄). Black line represents refractive index, and red line light scattering signals.

www.rsc.org/xxxxxx

ARTICLE TYPE

Figure S9. CS_{24k}-*b*-PEG eluogram (0.1 M NaN₃, 0.01 M NaH₂PO₄). Black line represents refractive index, and red line light scattering signal.

Figure S10. HAS_{12k}-*b*-PEG eluogram (0.1 M NaN₃, 0.01 M, NaH₂PO4). Black line represents refractive index, and red line light scattering signal.

www.rsc.org/xxxxxx

ARTICLE TYPE

Figure S11. HAS_{36k}-*b*-PEG apparent molecular weight distribution (0.1 M NaN₃, 0.01 M, NaH₂PO4). Black line represents refractive index, and red line light scattering signal.

www.rsc.org/xxxxxx

ARTICLE TYPE

S4. Optimisation of the complexation with PLL

 Table S1. Characteristics of the GAG-b-PEG complexes with PLL. The best results (in bold) are discussed in the manuscript.

GAG	10 ³ Mn, g/mol (M _w /M _n)	Concentration GAG- <i>b</i> -PEG/PLL [g/L]	Used volumes GAG <i>b</i> -PEG /PLL [µL]	Degree of sulfation (Elemental analysis)	R _h (nm)	PDI	Zeta (mV)
	24 (1.33)	0.7/1.2	250/750		94±8	0.08±0.02	0.3
Chondroitin sulfate (CS)			300/600		79	0.08	-
			600/600	0.9	46	0.09	-
			900/600		68	0.09	-5.0
			1000/750		80	0.048	-2.6
			250/750		41	0.08	-
	14 (1.39)	1.2/0.7	300/600		40±1	0.05±0.04	-1.2
			600/600	0.9	38	0.17	
			900/600		33	0.20	-3.9
			600/300		42	0.17	-12
	2.7 (1.20)	0.8/1.2	250/750	0.7	129	0.56	-
			300/600		208	0.49	0.4
			600/600		252	0.53	-
			250/750		50	0.24	
	36 (1.50)	0.7/1.2	300/600		32	0.22	
			600/600	3	25±1	0.16±0.05	0.4
			900/600		20	0.19	-12.7
			600/300		23	0.36	-14.4
			250/750		28	0.16	-
Hyaluronan sulfate (HAS)	12 (1.8)	0.72/1.2	300/600	1.7	26	0.21	-
			600/600		22±1	0.09±0.02	-0.11
			900/600		20	0.16	-2.0
			600/300		22	0.20	-2.0
	19 (1.45)	0.8/1.5	250/750		40	0.31	-
			300/600	3	26	0.23	-
			600/600		36±3	0.16±0.00	0.6
	13 (2.6)	1.0/1.0	250/750		35±4	0.10±0.08	-
			300/600	1	53	0.14	-
			600/600		31	0.12	-0.5

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxxx

ARTICLE TYPE

S5. Additional SEM, TEM and STEM images

Figure S12. STEM images of IPECs from CS_{24k}-*b*-PEG and PLL.

Figure S13. STEM and SEM images of IPECs from HAS_{12k}-*b*-PEG and PLL.

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxxx

ARTICLE TYPE

Figure S14. SEM (left) and S-TEM (right) images of IPECs from CS_{14k}-*b*-PEG and PLL.

Figure S15. TEM images of IPECs from CS_{14k}-*b*-PEG and PLL.

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxxx

ARTICLE TYPE

S6. Optimisation of the FGF-2 complexation

Table S2. Characteristics of the CS_{34k} -*b*-PEG complexes with FGF-2. Equal volumes of
the polymer solutions were mixed.

FGF concentration [g/L]	CS _{34k} - <i>b</i> -PEG concentration [g/L]	Mass ratio CS _{34k} - <i>b</i> -PEG/FGF	R _h (nm)	PDI
0.075	0.160	2.10	75	0.27
0.160	0.170	1.00	51	0.28
0.500	0.150	0.30	98	0.22
0.300	0.075	0.25	136	0.35
0.500	0.075	0.15	151	0.29

Figure S16. NTA analysis of IPECs from CS_{24k} -*b*-PEG and FGF-2 at ratio = 0.3: A) 35 s video frame; B) Particle size versus relative intensity.