Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2014

Supplementary Information

Supramolecular gels based on a gemini imidazolium amphiphile as molecular material for drug delivery

Mafalda Rodrigues,^{a,b} Ana Calpena,^{b,c} David B. Amabilino,^d M Luisa Garduño-Ramírez,^e Lluïsa Pérez-García^{a,b,*}

^a Department of Pharmacology and Therapeutic Chemistry, Universitat de Barcelona, Av. Joan XXIII, 29-31 08028 Barcelona, Spain. *Fax:* +34 934024539, *Tel:* +34 934035849, *E-mail:* <u>mlperez@ub.edu</u>

^b Institute of Nanoscience and Nanotechnology IN2UB, Universitat de Barcelona,
08028 Barcelona, Spain.

^c Department of Pharmacy and Pharmaceutical Technology, Universitat de Barcelona,
 Av. Joan XXIII, 29-31 08028 Barcelona, Spain.

^d Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus Universitari, 08193 Bellaterra, Spain.

^e Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos,
 Av. Universidad 1001, Cuernavaca, Morelos, México.

Fig. S1: Stress sweep of gel-1 in water-ethanol. G' (elastic or storage modulus), G'' (viscous or loss modulus), and $|f^*|$ (viscosity) are defined as function of τ (shear stress).

Sensor: PP60 Ti A Factor: 23580 Pa/Nm M Factor: 29.991 (1/s)/(rad/s) Inertia: 1.234e-05 kg m² Damping: 30.00 Thermal expansion coefficient: 1.100 µm/°C Compliance: 0.003157 rad/Nm Groove: 1.0 mm Driver version: 45

Element definition:

ID 2: 108; CS; 0.000 Pa; t < 300 s; ; T 32.00 °C <± 1.00 °C; ID 8: 3; CS; 0.000 Pa – 500.0 Pa log; f 1.000 Hz; t ---; #50; T 32.00 °C;

Evaluation:

CROSSOVER: G' (storage modulus) = G'' (loss modulus) = 165.0 Pa when Tau = 25.78 Pa

Fig. S2: Frequency sweep of gel-1: G' (elastic or storage modulus), G" (viscous or loss modulus), and $|f^*|$ (viscosity) defined as function of f (oscillatory frequency).

Sensor: PP60 Ti A Factor: 23580.000 Pa/Nm M Factor: 29.987 (1/s)/(rad/s) Inertia: 1.234e-05 kg m² Damping: 30.00 Thermal expansion coefficient: 1.100 µm/°C Compliance: 0.003157 rad/Nm Groove: 1.000 mm Driver version: 45 _____

Element definition:

ID 3: 2; CS; 0.5000 Pa; 10.00 Hz – 0.01000 Hz log; t ---; #6; T 32.00 °C;

Fig. S3: Stress sweep of gel-**Ibu** in water-ethanol. G' (elastic or storage modulus), G'' (viscous or loss modulus), and $|f^*|$ (viscosity) are defined as function of τ (shear stress).

Sensor: PP60 Ti A Factor: 23580 Pa/Nm M Factor: 29.979 (1/s)/(rad/s) Inertia: 1.234e-05 kg m² Damping: 30.00 Thermal expansion coefficient: 1.100 µm/°C Compliance: 0.003157 rad/Nm Groove: 1.001 mm Driver version: 45

Element definition:

ID 2: 108; CS; 0.000 Pa; t < 300 s; ; T 32.00 °C <± 1.00 °C; ID 8: 3; CS; 0.000 Pa – 500.0 Pa log; f 1.000 Hz; t ---; #50; T 32.00 °C;

Evaluation:

CROSSOVER: G' (storage modulus) = G'' (loss modulus) = 173.3 Pa when Tau = 25.29 Pa

Fig. S4: Stress sweep of gel-Ind in water-ethanol. G' (elastic or storage modulus), G'' (viscous or loss modulus), and $|f^*|$ (viscosity) are defined as function of τ (shear stress).

Sensor: PP60 Ti A Factor: 23580 Pa/Nm M Factor: 29.979 (1/s)/(rad/s) Inertia: 1.234e-05 kg m² Damping: 30.00 Thermal expansion coefficient: 1.100 µm/°C Compliance: 0.003157 rad/Nm Groove: 1.001 mm Driver version: 45

Element definition:

ID 2: 108; CS; 0.000 Pa; t < 300 s; ; T 32.00 °C <± 1.00 °C; ID 8: 3; CS; 0.000 Pa – 500.0 Pa log; f 1.000 Hz; t ---; #50; T 32.00 °C;

Evaluation:

CROSSOVER: G' (storage modulus) = G'' (loss modulus) = 165.3 Pa when Tau = 24.87 Pa

Fig. S5: Stress sweep of gel-**Mtx** in water-ethanol. G' (elastic or storage modulus), G'' (viscous or loss modulus), and $|f^*|$ (viscosity) are defined as function of τ (shear stress).

Sensor: PP60 Ti A Factor: 23580 Pa/Nm M Factor: 29.979 (1/s)/(rad/s) Inertia: 1.234e-05 kg m² Damping: 30.00 Thermal expansion coefficient: 1.100 µm/°C Compliance: 0.003157 rad/Nm Groove: 1.001 mm Driver version: 45

Element definition:

ID 2: 108; CS; 0.000 Pa; t < 300 s; ; T 32.00 °C <± 1.00 °C; ID 8: 3; CS; 0.000 Pa – 500.0 Pa log; f 1.000 Hz; t ---; #50; T 32.00 °C;

Evaluation:

CROSSOVER: G' (storage modulus) = G'' (loss modulus) = 421.5 Pa when Tau = 39.96 Pa

Fig. S6: Comparison of stress sweep of gel-1, gel-Ibu and gel-Ind in water-ethanol. G' (elastic or storage modulus), G'' (viscous or loss modulus), and $|f^*|$ (viscosity) are defined as function of τ (shear stress). Green vertical line marks the crossover for gel-1.

Fig. S7: Comparison of stress sweep of gel-1 and gel-Mtx in water-ethanol. G' (elastic or storage modulus), G" (viscous or loss modulus), and $|f^*|$ (viscosity) are defined as function of τ (shear stress). Green vertical line marks the crossover for gel-Mtx.

Fig. S8: ¹H NMR spectra of (1) sodium ibuprofenate in methanol/water (50:50) and of gel-**Ibu** containing increasing amounts of drug (2-6): **1**:ibuprofenate ratio (m/m) of 1:0.06; 1:0.08; 1:0.1; 1:0.15; 1:0.2.

Fig. S9: ¹H NMR spectra of (1) indomethacin in methanol/water (50:50) and of gel-Ind containing increasing amounts of drug (2-6): 1:indomethacin ratio (m/m) of 1:0.015; 1:0.030; 1:0.050; 1:0.10; 1:0.15.

Fig. S10: ¹H NMR spectra of (1) methotrexate in methanol/water (50:50) and of gel-**Mtx** containing increasing amounts of drug (2-6): **1**:methotrexate ratio (m/m) of 1:0.011; 1:0.020; 1:0.040; 1:0.08; 1:0.10.

Fig. S.11: Optical microscopy photographs of gel-1 in ethanol/water 35:65, taken with parallel polarisers and with crossed polarisers.

Fig. S.12: Optical microscopy photographs of gel-1 in ethanol/water 45:55, taken with parallel polarisers and with crossed polarisers.

Fig. S.13: Optical microscopy photographs of gel-1 in ethanol/water 50:50, taken with parallel polarisers and with crossed polarisers.

Fig. S.14: AFM image of gel-1 in ethanol/water 40:60.

Fig. S.15: AFM image of gel-1 in ethanol/water 45:55.

Fig. S.16: AFM image of gel-1 in ethanol/water 50:50.

Fig. S.17: AFM image of gel-**Ibu** (10:1 w/w) (left) and gel-**Ibu** (10:2.5 w/w) (right) in ethanol/water 40:60.

Fig. S18: X-ray powder diffractograms of sodium ibuprofenate (A), indomethacin (B), and methotrexate (C).

Table S1:

Kinetic models used to fit the data for the release of the different model drugs from the corresponding gel, and the respective AIC parameter:

Kinetic model	Equation	AIC		
		Gel-Ibu	Gel-Ind	Gel-Mtx
First Order	$Qt/Q\infty = 1-e^{-Kt}$	11.30	15.67	8.29
Higuchi	$Qt/Q\infty = K * t^{1/2}$	33.29	52.30	26.68
Korsmeyer-Peppas	$Qt/Q\infty = K^*t^n$	35.29	47.75	9.61

Qt is the amount of drug released at time t

 $Q\infty$ is the total amount of drug released

 $Qt/Q\infty$ is the fraction of drug released at time t

K is the release rate constant

P is the Plateau (Q at t ∞) and S is the Span (the difference between Q₀ and P)

n is the diffusion release exponent that could be used to characterize the different

release mechanism (n≤0.43 (Fickian diffusion), 0.43<n<0.85 (anomalous transport), and

 ≥ 0.85 (case II transport; i.e. zero order release)

 t_d is the time in which the 63.2% of the drug is released and β is the shape parameter