Supporting Information

A series of triphenylamine-based two-photon absorbing materials with AIE property for biological imaging

Yanqiu Liu,^a Ming Kong,^a Qiong Zhang,^a Zhiwen Zhang,^a Hongping Zhou,^a Shengyi Zhang,^a Shengli

Li,^a Jieying Wu,^{*a} Yupeng Tian^{*a}

^a Department of Chemistry, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui University, Hefei 230039, P. R.China;

(phone: +86-551-65108151; fax:+86-551-63861279; e-mail: jywu1957@163.com; yptian@ahu.edu.cn;)

Table of Contents

Figure S1.	(a) ORTEP diagram of 1A, Hydrogen atoms are omitted for clarity (b) the side elevation of 1A. (c) One-dimensional
chain of 1A	showing the N–O…H (green) along the a-axis
Figure S2.	One-dimensional chain of 2A showing the C-H···O (green) along the <i>a</i> -axis4
Figure S3.	One-dimensional chain of 3A showing the C-H…N (violet) along the b-axis4
Figure S4.	Linear absorption spectra of dyes 1A-3A and 1B-3B in five organic solvents of different polarities6
Figure S5.	Molecular orbital energy diagram of 1A-3A6
Figure S6.	One-photon fluorescence spectra of dyes 1A-3A and 1B-3B in five organic solvents of different polarities7
Figure S7.	(left) The TPEF spectra of chromophores 2B and 3B in ethyl acetate pumped by femtosecond laser at 300 mw under
different ex	citation wavelengths. (right) The logarithmic plots of the fluorescence integral of chromophores versus different excitation
intensities a	1 700 nm8
Figure S8.	Cytotoxicity data results obtained from the MTT assay (c=1×10 ⁻⁴ M)9
Table S1.	Photophysical properties of dyes 1A- 3A in five different solvents10
Table S2.	Table S2. Selected bond lengths [Å] and angles [°] for 1A, 2A, 3A and 3B
Table S3.	Photophysical properties of dyes 1A- 3A and 1B-3B in five different solvents

Synthesis of compound M1-M3

Preparation of 4-Nitro-benzyl-triphenylphosphonium bromide (M1)

4-Nitro-benzyl-triphenylphosphonium bromid was prepared referring the literature.¹

Preparation of 4-Diphenylaminobenzaldehyde (M2)

4-Diphenylaminobenzaldehyde was prepared referring the literature.²

Preparation of 4-[N, N'-bis(4-ethoxyphenyl)amino]benzaldehyde (M3)

4-Iodophenetole 233.50 g (1.06 mol) 4-Iodo-phenol and 42.45 g (1.06 mol) NaOH was placed into a dry mortar and well milled into powder, and then the mixture was transfered to 1000 mL round-bottom flask equipped with a magnetic stirrer. 300 mL of bromoethane, 15 mL of N, N-dimethylformamide and a catalytic amount of CsOH were added to the flask. The reactants were stirred at room temperature for 1 h, and then the mixture was heated up gradually to 80 °C and refluxed for about 70 h. Thin layer chromotography (TLC) confirmed the absence of the starting material for the reactions. The solvent bromoethane was evaporated under reduced pressure after the solution was cooled to room temperature, and firstly appropriate amount of dichloromethane was added with stirring, secondly appropriate amount of water was added, separated and the organic layer solution was obtained, dried by anhydrous MgSO₄, filtered and concentrated. 252.43 g red oil was obtained. Yield: 96.2%. ¹H-NMR: (400 Hz, (CD₃)₂SO), δ (ppm): 7.57 (d, *J* = 8.8 Hz, 2H), 6.76 (d, *J* = 8.8 Hz, 2H), 3.98 (q, *J* = 6.9 Hz, 2H), 1.30 (t, *J* = 7.0 Hz, 3H). IR (KBr, cm⁻¹): 2979, 2929, 1586, 1486, 1392, 1244, 1047, 820, 630, 507. HRMS (GCT-MS) Calcd for CsH₃IO, 247.97; Found, 247.9692.

N, **N'-bis(4-ethoxyphenyl)phenylamine** A suspension of 2.32 g (25 mmol) of Phenylamine, 20.86 g (75 mmol) of 4-Iodophenetole and 200 mL 1, 2-dichlorobenzene were added into a three-necked flask equipped with a magnetic stirrer, a reflux condenser, and a nitrogen input tube, and then 17.94 g (130 mmol) of anhydrous K_2CO_3 and 8.34 g (130 mmol) copper powder were added slowly. At last, a catalytic amount of 18-crown-6 was added under stirred. The reaction mixture was refluxed for 12 h in a heating mantle under nitrogen and monitored by TLC. After completion of the reaction, the solvent 1, 2-dichlorobenzene was evaporated under reduced pressure after the solution was cooled to room temperature. The crude product was purified by column chromatography with petroleum (b.p. 60-90 °C)/ethyl acetate (20:1 by volume) to yield 2.2 g of pale yellow oil. Yield: 26.4%. ¹H-NMR: (400 Hz, (CD₃)₂CO), δ (ppm): 7.18 (t, *J* = 7.6 Hz, 2H), 7.02 (d, *J* = 8.4 Hz, 4H), 6.86 (q, *J* = 8.1 Hz, 7H), 4.04 (q, *J* = 6.9 Hz, 4H), 1.37 (t, *J* = 7.0 Hz, 6H). IR (KBr, cm⁻¹): 3034, 2977, 2932, 2893, 2855, 1597, 1507, 1324, 1245, 1162, 827,753, 695.

4-[N, N'-bis(4-ethoxyphenyl)amino]benzaldehyde (M3)

4-[N, N'-bis(4-ethoxyphenyl)amino]benzaldehyde was prepared referring the literature.²⁹ Yellow oil was obtained. Yield: 40.7%. ¹H-NMR: ((400 Hz, CD₃)₂CO), δ (ppm): 9.76(s, 1H), 7.67 (d, *J* = 8.4 Hz, 2H), 7.19 (d, *J* = 8.8 Hz, 4H), 6.98 (d, *J* = 8.4 Hz, 4H), 6.78 (d, *J* = 8.8 Hz, 2H), 4.07 (q, *J* = 6.9 Hz, 4H), 1.38 (t, *J* = 7.0 Hz, 6H). IR (KBr, cm⁻¹): 3039, 2974, 2927, 2870, 1690, 1592, 1561, 1505, 1471, 1240, 1161, 826, 717, 684. HRMS (GCT-MS) Calcd for C₂₃H₂₃NO₃, 361.17; Found, 361.1653.

Fig. S1. (a) ORTEP diagram of **1A**, Hydrogen atoms are omitted for clarity. (b) the side elevation of **1A**. (c) One-dimensional chain of **1A** showing the N-O…H (green) along the *a*-axis.

Fig. S2. One-dimensional chain of 2A showing the C-H…O (green) along the *a*-axis

Fig. S3. One-dimensional chain of 3A showing the C-H…N (violet) along the *b*-axis.

Fig.S4. Linear absorption spectra of chromophores 1A-3A and 1B-3B in five organic solvents of different polarities

Fig. S5. Molecular orbital energy diagram of 1A-3A

Fig. S6. One-photon fluorescence spectra of chromophores 1A-3A and 1B-3B in five organic solvents of different polarities

Fig. S7. (left) The TPEF spectra of chromophores 2B and 3B in ethyl acetate pumped by femtosecond laser at 300 mw under different excitation wavelengths. (right) The logarithmic plots of the fluorescence integral of chromophores versus different excitation intensities at 700 nm

Fig. S8. Cytotoxicity data results obtained from the MTT assay ($c = 1 \times 10^{-4}$ M)

Compd	1A	2A	3A	3B
Chemical Formula	$C_{26}H_{20}N_2O_2$	$C_{30}H_{28}N_2O_4$	$C_{62}H_{54}N_6O_8$	$C_{31}H_{29}N_3O_2$
Formula weight	392.44	480.54	1011.11	475.57
Crystal system	Monoclinic	Monoclinic	Triclinic	Monoclinic
Space group	P2 _{1/} c	$P2_1$	Pī	$P2_1$
$a(\text{\AA})$	8.488(5)	10.326(5)	11.899(5)	10.717(5)
$b(\text{\AA})$	8.983(5)	22.629(5)	12.656(5)	13.917(5)
$c(\text{\AA})$	27.088(5)	12.174(5)	18.797(5)	17.565(5)
α (0)	90.000	90.000	85.623(5)	90.000
β (0)	96.500(5)	114.636(5)	74.828(5)	92.417(5)
γ (o)	90.000	90.000	87.564(5)	90.000
V(Å3)	2052.1(2)	2585.7(2)	2723.3(2)	2617.5(2)
Ζ	4	4	2	4
$R_{I}, wR_{2}[I \ge 2\sigma(I)]$	0.0574, 0.1511	0.0688, 0.1895	0.0764, 0.2228	0.0506, 0.1390
R_1 , wR_2 [all data]	0.0973, 0.1833	0.1583, 0.2322	0.1274, 0.2640	0.1023, 0.1797
Goodess-of-fit on F2	1.026	0.994	1.044	1.005

 Table S1
 Crystal data collection and structure refinement of 1A-3A and 3B

Table S2. Selected bond lengths [Å] and angles [°] for 1A-3A and 3B

1A							
C(21)-C(20)	1.491(4)	C(19)-C(16)	1.484(4)	C(19)-C(20)	1.266(4)		
C(7)-N(1)-C(1)	119.2(2)	C(13)-N(1)-C(7)	120.8(2)	C(1)-N(1)-C(13)	119.6(2)		
2A							
C(22)-C(23)	1.498(6)	C(21)-C(20)	1.465(5)	C(22)-C(21)	1.280(5)		
N(1)-O(3)	1.216(5)	N(1)-O(4)	1.211(6)	C(3)-O(1)	1.456(2)		
C(15)-N(2)-C(9)	119.5(3)	C(15)-N(2)-C(6)	120.6(3)	C(9)-N(2)-C(6)	117.2(3)		
O(4)-N(1)-O(3)	123.2(5)	C(22)-C(21)-C(20)	127.4(4)	O(3)-N(1)-C(28)	119.2(6)		
3A							
C(10)-C(9)	1.452(5)	C(9)-C(7)	1.354(5)	C(7)-C(4)	1.487(4)		
C(7)-C(8)	1.443(5)	C(8)-N(3)	1.136(4)	C(19)-O(3)	1.366(5)		
C(16)-N(2)-C(13)	123.1(3)	C(24)-N(2)-C(13)	120.0(3)	C(16)-N(2)-C(24)	116.9(3)		
C(7)-C(8)-N(3)	176.5(4)	C(10)-C(9)-C(7)	133.5(3)	O(1)-N(1)-O(2)	107.9(2)		
3B							
C(26)-C(24)	1.481(3)	C(24)-C(23)	1.348(3)	C(23)-C(20)	1.457(3)		
C(24)-C(25)	1.436(4)	C(25)-N(1)	1.154(3)	N(2)-H(2A)	0.860(2)		
C(24)-C(25)-N(1)	177.5(3)	C(26)-C(24)-C(23)	126.2(2)	C(4)-N(3)-C(17)	120.9(2)		
C(8)-N(3)-C(17)	120.7(2)	C(8)-N(3)-C(4)	118.3(2)	H(2A)-N(2)-C(29)	120.0		

Compd	Solvents	$\lambda max^a(Emax^b)$	λmax^c	Φ	τ/ns	$\Delta v (\text{cm}^{-1})$	λmax^{d}	σ/GM	$\sigma{ imes}\Phi$
1B	benzene	302(2.4), 363(2.8)	529	0.140	1.02	3125			
	THF	302(1.9), 352(3.2)	548	0.051	0.47	4246			
	ethyl acetate	301(2.5), 347(2.3)	414	0.050	0.51	4664			
	ethanol	299(2.2), 350(2.2)	439	0.037	0.38	5792			
	DMF	303(2.7), 353(2.4)	440	0.022	0.35	5601			
2B	benzene	303(2.7), 372(3.3)	441	0.160	1.61	4206			
	THF	303(2.1), 372(3.3)	447	0.150	0.73	4510			
	ethyl acetate	301(2.5), 368(3.6)	448	0.104	0.73	4852	500	3160	527
	ethanol	287(2.4), 377(3.0)	508	0.018	0.49	6840			
	DMF	303(2.6), 374(3.6)	463	0.123	1.73	5140			
3B	benzene	405(3.4)	519	0.0039	0.45	5424			
	THF	404(3.5)	525	0.0021	1.31	5705			
	ethyl acetate	399(3.7)	527	0.0042	0.97	6087	550	98369	394
	ethanol	413(4.5)	528	0.0004	0.04	5274			
	DMF	416(4.5)	546	0.0004	0.05	5723			
	benzene	303(3.1), 426(3.3)	550						
	THF	301(2.8), 418(3.6)	587						
1A	ethyl	299(3.0), 418(3.6)	591						
	ethanol	299(3.0), 418(3.2)							
	DMF	302(3.0), 352(3.2)							
	benzene	304(2.2), 446(2.7)	587						
	THF	303(2.2), 444(2.7)							
2A	ethyl acetate	301(2.4), 439(3.0)							
	ethanol	300(2.3), 440(2.6)							
	DMF	303(2.6), 374(3.6)							
	benzene	463(3.0)							
3A	THF	459(3.2)							
	ethyl acetate	454(3.6)	518						
	ethanol	460(3.4)	527						
	DMF	461(3.2)	528						

Table S3. Photophysical properties of dyes 1A- 3A and 1B-3B in five different solvents

a: Absorption peak position in nm, b: Maximum molar absorbance in 10⁴ mol⁻¹ L cm⁻¹, c: Peak position of OPEF spectra in nm. Φ : Fluorescence quantum yield, τ : Fluorescence lifetime, Δv : Stokes shift in cm⁻¹, e: The TPEF peak position in nm. σ : 2PA cross section in GM, $\sigma \times \Phi$: two-photon action cross-section. [1] Whittall IR, Humphrey MG. Organometallic complexes for nonlinear optics.

3.1 molecular quadratic hyperpolarizabilities of ene-, imine-, and azo-linked

ruthenium s-acetylides: X-ray Crystal structure of Ru((E)-4,4'-C=CC6H4CH]CHC6 H4NO2)(PPh3)2(h -C5H5). Organometallics

1996;15:1935-41.

[2] Wang XM, Zhou YF, Yu WT, Wang Ch, Fang Q, Jiang MH, et al. Two-photon

pumped lasing stilbene-type chromophores containing various terminal donor groups: relationship between lasing effi ciency and intramolecular charge transfer. J Mater Chem 2000;10:2698 -703.