Supporting Information

pH-Activatable Near-Infrared Fluorescent Probes for Detection of Lysosomal pH inside Living Cells

Giri K. Vegesna^a, Jagadeesh Janjanam,^a Jianheng Bi^a, Fen-Tair Luo^{b*}, Jingtuo Zhang^a, Connor Olds^a, Ashutosh Tiwari^{a*}, and Haiying Liu^{a*}

^aDepartment of Chemistry, Michigan Technological University, Houghton, MI 49931

^bInstitute of Chemistry, Academia Sinica, Taipei, Taiwan 11529, Republic of China

Table of Contents

Figure S1.	¹ H NMR spectrum of compound 3					
Figure S2.	¹³ C NMR spectrum of compound 3					
Figure S3.	¹ H NMR spectrum of compound 5					
Figure S4.	¹³ C NMR spectrum of compound 5					
Figure S5.	¹ H NMR spectrum of fluorescent probe A					
Figure S6.	¹³ C NMR spectrum of fluorescent probe A					
Figure S7.	¹ H NMR spectrum of fluorescent probe B					
Figure S8.	¹³ C NMR spectrum of fluorescent probe B					
Figure S9.	¹ H NMR spectrum of fluorescent probe C					
Figure S10.	¹³ C NMR spectrum of fluorescent probe C					
Figure S11.	¹ H NMR spectrum of fluorescent probe D					
Figure S12.	¹³ C NMR spectrum of fluorescent probe D					
Figure S13.	Normalized absorbance and fluorescence spectra of	15				
	fluorescent probe A					
Figure S14.	Normalized absorbance and fluorescence spectra of	15				
	fluorescent probe B					
Figure S15.	Normalized absorbance and fluorescence spectra of	16				
	fluorescent probe C					
Figure S16.	Normalized absorbance and fluorescence spectra of	16				
	fluorescent probe D					
Figure S17.	Fluorescence spectra of the fluorescent probe A in the					
_	presence of different concentrations of ethanol.					
Figure S18	Photostability of the fluorescent probe A 1					
Figure S19.	Absorption spectra of fluorescent probe B at different pH					
	values and effect of pH on absorbance of the fluorescent					
	probe B	4.0				
Figure S20.	Figure S20. Fluorescence spectra of fluorescent probe B at different					
	pH values and effect of pH on fluorescence of the					
F igure 004	The second probe B	40				
Figure S21	Fluorescence spectra of the fluorescent probe B in the	19				

Figure S22 Figure S23	presence of different concentrations of ethanol. Photostability of the fluorescent probe B Absorption spectra of fluorescent probe C at different pH values and effect of pH on absorbance of the fluorescent probe C	20 20
Figure S24.	Fluorescence spectra of fluorescent probe C at different pH values and effect of pH on fluorescence of the fluorescent probe C .	21
Figure S25.	Fluorescence spectra of the fluorescent probe C in the presence of different concentrations of ethanol.	22
Figure S26	Photostability of the fluorescent probe C .	22
Figure S27.	Fluorescent responses of fluorescent probe B to different metal ions (200 μ M) at pH 4.1 and 7.0.	23
Figure S28.	Fluorescent responses of 5μ M fluorescent probe C to different metal ions (200 μ M) at pH 4.1 and 7.0.	23
Figure S29.	Fluorescent responses of fluorescent probe D to different metal ions (200 μ M) at pH 4.1 and 7.0.	24
Figure S30.	Absorbance spectra of compound 5 at pH 4.1 and 7.0	24
Figure S31.	Fluorescence spectra of compound 5 at pH 4.1 and 7.0	25
Figure S32.	Fluorescence images of MDA-MB-231 cells with 5 and 20 μ M of dyes B , C , and D	26
Figure S33	Fluorescence images of MDA-MB-231 cells incubated with increasing concentrations of Lysosensor-green dye	27
Figure S34	Fluorescent images of MDA-MB-231 cells incubated with 5, 10, and 20 µM of probe 5 .	28
Table 1.	Absorption coefficients, fluorescence quantum yields and pK_a values of the probes	29

Figure S1: ¹H NMR spectrum of compound 3.

Figure S2: ¹³C NMR spectrum of compound 3.

Figure S3: ¹H NMR spectrum of compound 5.

والمعارضها والمسارية والمرابط والمسارية والمرابعة والمسارية والمسارية

Figure S4: ¹³C NMR spectrum of compound 5.

Figure S5: ¹H NMR spectrum of fluorescent probe A.

Figure S6: ¹³C NMR spectrum of fluorescent probe A.

Figure S7: ¹H NMR spectrum of fluorescent probe B.

Figure S8: ¹³C NMR spectrum of fluorescent probe B.

Figure S9: ¹H NMR spectrum of fluorescent probe C.

Figure S10: ¹³C NMR spectrum of fluorescent probe C.

Figure S11: ¹H NMR spectrum of fluorescent probe D

Figure S12: ¹³C NMR spectrum of fluorescent probe D

Figure S13: Normalized absorbance and fluorescence spectra of fluorescent probe **A** in EtOH/pH8.0 HEPES Buffer (v/v = 2/3). Excitation wavelength: 350 nm.

Figure S14: Normalized absorbance and fluorescence spectra of fluorescent probe **B** in EtOH/pH7.0 HEPES Buffer (v/v = 2/3). Excitation wavelength: 350 nm

Figure S15: Normalized absorbance and fluorescence spectra of fluorescent probe **C** in EtOH/pH7.0 HEPES Buffer (v/v = 2/3). Excitation wavelength: 350 nm.

Figure S16: Normalized absorbance and fluorescence spectra of fluorescent probe **D** in EtOH/pH8.0 HEPES Buffer (v/v = 2/3). Excitation wavelength: 350 nm

Figure S17. Fluorescent spectra of 5 μ M fluorescent probe **A** in 40 mM citratephosphate buffer solution at pH 4 containing different concentrations of ethanol.

Figure S18. Photostability of 5 μ M fluorescent probe **A** at pH 4.1 in 40% ethanol solution. Sample was exposed under respective optimal excitation wavelength and fluorescence intensities were measured at 5-min intervals.

Figure S19: Absorption spectra of 5 μ M fluorescent probe **B** (with three repetitions/error bars) at different pH values (left) and effect of pH on absorbance of the fluorescent probe **B** at 718 nm (right).

Figure S20: Fluorescence spectra of 5 μ M fluorescent probe **B (with three repetitions/error bars)** at different pH values (left) and effect of pH on fluorescence of the fluorescent probe **B** at 743 nm(right). Excitation wavelength: 670 nm

Figure S21. Fluorescent spectra of 5 μ M fluorescent probe **B** in 40 mM citratephosphate buffer solution at pH 4 containing different concentrations of ethanol.

Figure S22. Photostability of 5 μ M fluorescent probe **B** at pH 4.1 in 40% ethanol solution. Sample was exposed under respective optimal excitation wavelength and fluorescence intensities were measured at 5-min intervals.

Figure S23: Absorption spectra of 5 μ M fluorescent probe **C** (with three repetitions/error bars) at different pH values (left) and effect of pH on absorbance of the fluorescent probe **C** at 718 nm (right).

Figure S24: Fluorescence spectra of 5 μ M fluorescent probe **C** with three repeated measurements at different pH values (left) and effect of pH on fluorescence of the fluorescent probe **C** at 743 nm(right). Excitation wavelength: 670 nm.

Figure S25. Fluorescent spectra of 5 μ M fluorescent probe **C** in 40 mM citratephosphate buffer solution at pH 4 containing different concentrations of ethanol.

Figure S26. Photostability of 5 μ M fluorescent probe **C** at pH 4.1 in 40% ethanol solution. Sample was exposed under respective optimal excitation wavelength and fluorescence intensities were measured at 5-min intervals.

Figure S27. Fluorescent responses of 5 μ M fluorescent probe **B** to different metal ions (200 μ M) at pH 4.1 and 7.0. Excitation wavelength: 670 nm.

Figure S28. Fluorescent responses of 5μ M fluorescent probe **C** to different metal ions (200 μ M) at pH 4.1 and 7.0. Excitation wavelength: 670 nm.

Figure S29. Fluorescent responses of 5 μ M fluorescent probe **D** to different metal ions (200 μ M) at pH 4.1 and 7.0. Excitation wavelength: 670 nm.

Figure S30. Absorbance spectra of compound 5 at pH 4.1 and 7.0.

Figure S31. Fluorescence spectra of compound 5 at pH 4.1 and 7.0.

Figure S32. Fluorescence images of MDA-MB-231 cells incubated with fluorescent probes **B**, **C**, and **D**. Cells were incubated with 5 μ M (**A**) or 20 μ M (**B**) of fluorescent probes **B**, **C**, and **D** for 2 h and imaged for co-localization in presence of 5 μ M LysoSensor Green, a lysosomal stain and Hoechst, a nuclear stain. The images were acquired using inverted fluorescence microscope at 60X magnification.

Figure S33. Fluorescence images of MDA-MB-231 cells incubated with 0.3, 1.0, and 3.0 μ M of Lysosensor-green dye and 1.0 μ g/ml of Hoechst33342 dye for 2 h. The images were acquired using inverted fluorescence microscope at 60X magnification.

Figure S34. Fluorescence images of MDA-MB-231 cells incubated for 2 h with 5, 10, and 20 μ M concentrations of probe 5 and 1 μ M of Hoechst33342 dye. The images were acquired using inverted fluorescence microscope at 60X magnification.

Table 1: Absorption coefficients, fluorescent quantum yields, and pK_a values of the probes

Compound	Absorption coefficient (EtOH)	pK _a , pK _{cycl} (Citrate- phosphate buffer with 40%EtOH)	Quantum Yield at pH 4.1 (Citrate- phosphate buffer with 40%EtOH)	Quantum Yield at pH 7.4 (Citrate- phosphate buffer with 40%EtOH)
A	9.8 x 10 ⁴	1.56, 5.80	0.48	0
В	5.2 x 10 ⁴	1.55, 4.60	0.57	0
С	6.2 x 10 ⁴	1.81, 4.86	0.37	0
D	1.1 x 10⁵	1.56, 5.38	0.46	0
5	8.8 x 10 ⁴			

Determination of the fluorescence quantum yield :

Fluorescence quantum yields for **A**, **B**, **C**, **D** were determined using Rodamin 6G (Φ f = 0.95 in ethanol) as fluorescence standard. The equation used for calculating is as follows:

 $\Phi f_{(x)} = \Phi_{f(s)} (A_s F_x / A_x F_s) (n_x / n_s)^2$

Where Φ_f is the fluorescence quantum yield, **A** is the absorbance at the excitation wavelength (670nm), **F** is the integration of the emission curve (area under the curve), and **n** is the refractive index of the solvents used. Subscripts **s** and **x** refer to the standard and unknown respectively.