Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2014

SUPPORTING INFORMATION

1 2

2 3

Table S1: Values from fitting the release data to Korsmeyer-Peppas Equation (2).

Sample	K	n
Free calcein	0.260	0.735
Control	0.226	0.717
DETA	0.178	0.581
TEPA	0.077	0.630
PEHA	0.070	0.678
PAH	0.049	0.613

4

Table S2: Changing Exponent for Korsmeyer-Peppas Equation with Associated Release Mechanism and DDS Geometry⁵¹

		Release mechanism			
		Fickian	Non-Fickian	Zero Order	
Geometry	Thin film	0.5	0.5 <n<1< th=""><th>1</th></n<1<>	1	
	Cylinder	0.45	0.45 <n<1< th=""><th>1</th></n<1<>	1	
	Sphere	0.43	0.43 <n<1< th=""><th>1</th></n<1<>	1	

7

8 9

 Table S3. A summary of physicochemical properties of silica samples tested.

Sample	ζ mV	Organic Content ^a	Surface Area ^b m ² /g	d _{pore} ^b nm	Pore volume b cm ³ /g
Stöber	-48.7	<2	13	n.a.	0.034
APMSN	+15.4	5	709	2.7	0.49
SAMSN	-22.3	7	474	2.6	0.24
PEHA	+10.8	5	11	broad	0.024
РАН	-18.4	n.d.	55	broad	0.3

10 ^a Measured from TGA, reported as wt%. ^b Surface area, pore size and pore volume were obtained from nitrogen

11 adsorption and desorption experiments. n.a. indicates not applicable and n.d. stands for not determined.

Figure S1. Krosmeyer-Peppas model fitted to 60% of the release data.

Figure S2. Silica yield obtained from samples prepared in each of the factorial experiments.

Figure S3. Silica yield obtained in the factorial experiments as a function of synthesis parameters.

2 Figure S5. ATR-FTIR spectra for silica samples tested. The region highlighted in the left figure with 3 dashed rectangle is expanded in the figure on right. Silica peaks are marked as follows: **a** Si-O-Si (v_{as}) 4 ~1080 cm⁻¹, **b** Si-OH 950 cm⁻¹, **c** Si-O-Si (v_s) 800 cm⁻¹. Following peaks were assigned in the bottom 5 spectra: **i** water ~1635 cm⁻¹, **ii** amines ~1570 cm⁻¹, **iii** C-H / amines 1470 cm⁻¹, **iv** C-H 2930 and 2850 6 cm⁻¹ and **v** –OH from water and Si-OH 3200-3600 cm⁻¹.

1

9

- 10 Figure S6. A representative titration result of acidic SAMSN against NaOH. An additional ~0.3 mmol
- base is required for obtaining same pH in the presence of the SAMSN samples as of the control sample
- 12 of identical weight, thus confirming the successful acidic functionalisation of MSN.

13

- 14 Figure S7. A representative X-ray diffractogram for both MSN samples showing pore structuring. XRD
- 15 results from other samples did not show any peaks and the data are not shown.

- 2 Figure S8. Pore size distribution for selected samples obtained from nitrogen adsorption experiments.
- 3 GN and Stöber samples exhibit broad distribution and significant amount of inter-particle (external)4 porosity evident from the presence of macropores.

