3D free-standing porous scaffolds made of graphene oxide as substrates for neural cell growth

M. C. Serrano,^{a,*} J. Patiño,^b C. García-Rama,^a M. L. Ferrer,^b J. L. G. Fierro,^c A. Tamayo,^d J. E. Collazos-Castro,^a F. del Monte,^b M. C. Gutiérrez^{b,*}

^a Laboratory of neural repair and biomaterials, Hospital Nacional de Parapléjicos (SESCAM), Finca la Peraleda s/n, 45071 Toledo, Spain. Phone: +34 925 247758; fax: +34 925 247745. E-mail: <u>mslopezterradas@sescam.jccm.es</u>

^b Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), C/ Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain. Phone: +34 91 3349056; fax: +34 91 3720623. E-mail: mcgutierrez@icmm.csic.es

^c Instituto de Catálisis y Petroleoquímica (ICP), Consejo Superior de Investigaciones Científicas (CSIC), C/ Marie Curie 2, 28049 Madrid, Spain

^d Instituto de Cerámica y Vidrio (ICV), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain

Electronic Supplementary Information

Further discussion on GOx characterization

Thermal treatment of GOx promoted a severe loss of mass (*ca.* 40 %, as deduced from TGA) corresponding to the decomposition of oxygen functional groups, as both FT-IR and XPS revealed. The initial oxygen content of the GOx synthesized was very high (C/O ratio of 2.1, as determined by XPS). This oxygen was mostly in the form of hydroxyl and epoxy (63 %) and carbonyl or carboxyl (37 %) groups, according to XPS and confirmed by FT-IR. However, after thermal treatment, the oxygen content significantly decreased (C/O ratio of 4.3). At the same time, the intensities of the FT-IR peaks corresponding to the oxygen functionalities (*e.g.*, vibration and deformation peaks of O–H groups at 3395 cm⁻¹ and 1410 cm⁻¹, respectively, and the C–O (alkoxy) stretching peak at 1052 cm⁻¹) decreased dramatically, suggesting that most O-H functional groups were removed.¹ Besides, the peak at 1578 cm⁻¹ (corresponding to the skeletal vibration of graphene)² appeared, being then noticeable the restoration of the

Csp² structure in this thermally treated GOx even after only 200 °C.³ The increase in the intensity of the band at 1226 cm⁻¹ may be ascribed to either the epoxide ring opening followed by the inter/intramolecular lactone/ester formation⁴ or the combination of free hydroxyl groups and K-O stretching/hydroxyl groups, supporting the reaction between potassium ions and oxygen functional groups of GOx sheets.⁵

Powder	Graphite	GOx	Cross-linked GOx	Cross-linked & thermally treated GOx	Thermally treated GOx
I_D/I_G^a	0.09	0.77	0.79	0.81	0.78
$W_D(cm^{-1})^b$	1361	1355	1354	1354	1358
$W_G(cm^{-1})^c$	1581	1590	1587	1596	1595

Table 1-SI. Characterization of GOx samples by Raman spectroscopy.

^{*a*} Ratio between the intensity of bands D and G in the Raman spectra.

^b Wavelength at which band D shows the maximum.

^c Wavelength at which band G shows the maximum.

Figure 1-SI. Representative Raman spectra of GOx as obtained (1), HMDI-cross-linked GOx (2), HMDI-cross-linked GOx thermally reduced at 200 °C (3) and GOx thermally reduced at 200 °C (4). Raman spectrum of pristine Graphite is also included for comparison.

Figure 2-SI. Field-emission SEM images illustrating a detail of the wrinkled sheets that conforms the walls of pristine (A) and cross-linked and thermally treated 3D GOx scaffolds (B).

Figure 3-SI. Panoramic view of a homogeneous 2D GOx film after thermal treatment at 200 °C as obtained by field-emission SEM.

Figure 4-SI. Progressive formation of a neural network by ENPCs on 2D *films*. Pictures correspond to representative optical microscopy images at different time points. Scale bars represent 25 μ m in all cases.

Figure 5-SI. SEM images of representative ENPC cultures on PL-coated glass coverslips (*control*) at either 7 (A-C) or 14 (D-F) days. Scale bars represent 200 μ m (A,D), 100 μ m (B,E), 20 μ m (F), and 10 μ m (C).

Figure 6-SI. ENPC viability studies on GOx-based substrates over time. Representative CLSM images are shown. Alive cells appear in green (stained with calcein), while dead cells are shown in red (EthD-1). Scale bars represent 50 µm in all images.

Figure 7-SI. Synapsis formation on GOx-based substrates. Representative CLSM images showing staining for synaptophysin (green) at different time points are shown. Scale bars represent 50 µm in all images.

Figure 8-SI. Quantification of ENPC differentiation on *control* and *2D films* over time. Histograms show the percentage of substrate area positively stained for the different markers: map-2 (A), vimentin (B), tau (C), and synaptophysin (D). Statistically significant differences of each sample with respect to 1 day (*t1*), 7 days (*t2*) and *control* (*s*) are indicated (p < 0.05).

Figure 9-SI. Demonstration of the need of PL-coating to guarantee appropriate ENPC adhesion and growth on GOx substrates. Representative images of ENPC cultures at 2 days on a glass coverslip (A), 2D GOx-based film (B) and 3D GOx-based scaffold (C) without coating of PL are shown. Pictures are obtained by either optical microscopy (A,B) or CLSM after viability staining (C). Scale bars represent 25 μ m (A,B) and 50 μ m (C).

References

- 1 J. Zhang, H. Yang, G. Shen, P. Cheng, J. Zhang, S. Guo. *Chem Commun*, 2010, **46**, 1112.
- 2 P. Song, X. Zhang, M. Sun, X. Cui, Y. Lin. RSC Adv, 2012, 2, 1168.
- 3 C. Botas, P. Álvarez, C. Blanco, R. Santamaría, M. Granda, M. D. Gutiérrez, et al. *Carbon*, 2013, **52**, 476.
- 4 R. S. Dey, S. Hajra, R. K. Sahu, C. R. Raj, M. K. Panigrahic. *Chem Commun*, 2012, **48**, 1787.
- 5 S. Park, J. An, R. D. Piner, I. Jung, D. Yang, A. Velamakanni, et al. *Chem Mater*, 2008, **20**, 6592.